CS224d
Deep Learning
for Natural Language Processing

Richard Socher, PhD



Welcome

®)
®
(> ®
O 0 0 ()
@ ORSNOSRONNO ®
. 2 2 -
Q we ' ened Q
0 Iere
OO,

fifteen minutes
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Course Logistics

e |nstructor: Richard Socher
(Stanford PhD, 2014; now Founder/CEO at MetaMind)

e TAs: James Hong, Bharath Ramsundar, Sameep Bagadia, David
Dindi, ++

e Time: Tuesday, Thursday 3:00-4:20
e Location:

e There will be 3 problem sets (with lots of programming),
a midterm and a final project

e For syllabus and office hours, see
e Slides uploaded before each lecture, video + lecture notes after
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Pre-requisites

e Proficiency in Python
* All class assignments will be in Python. There is a tutorial

College Calculus, Linear Algebra (e.g. MATH 19 or 41, MATH 51)

e Basic Probability and Statistics (e.g. CS 109 or other stats course)

e Equivalent knowledge of CS229 (Machine Learning)
e cost functions,
 taking simple derivatives
* performing optimization with gradient descent.
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Grading Policy
e 3 Problem Sets: 15% x 3 =45%
e Midterm Exam: 15%
e Final Course Project: 40%
* Milestone: 5% (2% bonus if you have your data and ran an experiment!)
e Attend at least 1 project advice office hour: 2%
* Final write-up, project and presentation: 33%
* Bonus points for exceptional poster presentation
e Late policy
e 7 free late days — use as you please
* Afterwards, 25% off per day late
e PSets Not accepted after 3 late days per PSet
* Does not apply to Final Course Project
e Collaboration policy: Read the student code book and Honor Code!

Vi

e Understand what is ‘collaboration’ and what is ‘academic infraction
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High Level Plan for Problem Sets

The first half of the course and the first 2 PSets will be hard

e PSet1isin pure python code (numpy etc.) to really understand
the basics

e Released on April 4th

e New: PSets 2 & 3 will be in TensorFlow, a library for putting
together new neural network models quickly (= special lecture)

e PSet 3 will be shorter to increase time for final project

e Libraries like TensorFlow (or Torch) are becoming standard tools

But still some problems
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What is Natural Language Processing (NLP)?

e Natural language processing is a field at the intersection of
* computer science
e artificial intelligence
e and linguistics.
e Goal: for computers to process or “understand” natural
language in order to perform tasks that are useful, e.g.
* Question Answering

e Fully understanding and representing
the meaning of language (or even
defining it) is an illusive goal.

e Perfect language understanding is
Al-complete
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NLP Levels

‘_Phonetic/Phonological Analysisj OCR/Tokenization

Morphological analysis
|

i Syntactic analysis |

- Semantic Interpretation !
|

Discourse Processing
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(A tiny sample of) NLP Applications

e Applications range from simple to complex:
e Spell checking, keyword search, finding synonyms

e Extracting information from websites such as

e product price, dates, location, people or company names

e Classifying, reading level of school texts, positive/negative
sentiment of longer documents

e Machine translation
e Spoken dialog systems
e Complex question answering
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NLP in Industry

e Search (written and spoken)

PEERE T %3

Modalling the club

TEL: 8688777—8686966

* Online advertisement
e Automated/assisted translation

e Sentiment analysis for marketing or finance/trading

3/18/11 at 4:00 PM 17 Comments
Mentions of the
Name ‘Anne
Hathaway” May
Drive Berkshire
Hathaway Stock

By Patrick Huguenin

808

e Speech recognition

e Automating customer support
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Why is NLP hard?

e Complexity in representing, learning and using linguistic/
situational/world/visual knowledge

e Jane hit June and then she [fell/ran].

e Ambiguity: “I made her duck”
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What’s Deep Learning (DL)?

e Deep learning is a subfield of machine learning

 Most machine learning methods work

Feature NER
well because of human-designed lffejf;‘;ngd z
representations and input features gﬁﬂ(’vfﬁm Chamcier g .
. . Current POS Ta v
* For example: features for finding Surounding POS Tag Sequence | ¢
oy . . Current Word Shape v
named entities like locations or Surrounding Word Shape Sequence | v
organization names (Finkel, 2010):  JESE o b v |
e Machine learning becomes just optimizing - |

weights to best make a final prediction

-
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Machine Learning vs Deep Learning

Machine Learning in Practice

AN

Describing your data with .
Learning
features a computer can .
algorithm
understand
\ ] |\ ]
! |
Domain specific, requires Ph.D. Optimizing the
level talent

weights on features



What’s Deep Learning (DL)?

e Representation learning attempts
to automatically learn good
features or representations

e Deep learning algorithms attempt to
learn (multiple levels of)
representation and an output

e From “raw” inputs x (e.g. words)
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On the history and term of “Deep Learning”

e We will focus on different kinds of neural networks
e The dominant model family inside deep learning

* Only clever terminology for stacked logistic regression units?

* Somewhat, but interesting modeling principles (end-to-end)
and actual connections to neuroscience in some cases

e We will not take a historical approach but instead focus on
methods which work well on NLP problems now

e For history of deep learning models (starting ~1960s), see:

by Schmidhuber
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Reasons for Exploring Deep Learning

e Manually designed features are often over-specified, incomplete
and take a long time to design and validate

e Learned Features are easy to adapt, fast to learn

e Deep learning provides a very flexible, (almost?) universal,
learnable framework for representing world, visual and
linguistic information.

e Deep learning can learn unsupervised (from raw text) and
supervised (with specific labels like positive/negative)
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Reasons for Exploring Deep Learning

* |n 2006 deep learning techniques started outperforming other
machine learning techniques. Why now?

e DL techniques benefit more from a lot of data
e Faster machines and multicore CPU/GPU help DL

e New models, algorithms, ideas

- Improved performance (first in speech and vision, then NLP)
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Deep Learning for Speech

e The first breakthrough results of

“deep learning” on large datasets Phonemes/Words
happened in speech recognition

e Context-Dependent Pre-trained
Deep Neural Networks for Large
Vocabulary Speech Recognition
Dahl et al. (2010)

Acoustic model Recog | RT03S
\ WER | FSH

Traditional 1l-pass 27.4

features —adapt

Deep Learning l-pass 18.5 16.1

—adapt (-33%) (-32%)
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Deep Learning for Computer Vision

e Most deep learning groups
have (until 2 years ago)
focused on computer vision

e Break through paper:
ImageNet Classification with
Deep Convolutional Neural
Networks by Krizhevsky et
al. 2012

Zeiler and Fergus (2013)
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Deep Learning + NLP = Deep NLP

e Combine ideas and goals of NLP and use representation learning
and deep learning methods to solve them

e Several big improvements in recent years across different NLP
¢ levels: speech, morphology, syntax, semantics

e applications: machine translation, sentiment analysis and
guestion answering
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Representations at NLP Levels: Phonology

e Traditional: Phonemes

CONSONANTS (PULMONIC) © 2005 IPA
Bilabial | Labiodental| Dental | Alveolar Postalveolar Retroflex = Palatal | Velar = Uvular | Pharyngeal  Glottal

Plosive pb t d tdcykggqe 7

Nasal m n n np 19 N

Trill B T R

Tap or Flap \YA r C

pewe & B f Vv B0 sz [3 sz c¢cjxyyxys hq hA

Fatame b K |

Approximant U I 1 ] uj

pproximant. | 1 |l A L

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

e DL: trains to predict phonemes (or words directly) from sound
features and represent them as vectors
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Representations at NLP Levels: Morphology

e Traditional: Morphemes

e DL:

* every morpheme is a vector

* a neural network combines
two vectors into one vector

* Thang et al. 2013
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prefix stem suffix
un interest ed

unfortunatelyc,,
Wi, b

unfortunatecr,, |yoyr

Wi, bm

Unpre  fortunatecry,
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Neural word vectors - visualization

need help
come
go
take
qive keep
make get
meet cem continue
expect want become
think
say remain
are .
IS
be
wergas
being
been

hadnas

have



Representations at NLP Levels: Syntax

e Traditional: Phrases
Discrete categories like NP, VP

e DL:
* Every word and every phrase
is a vector

* a neural network combines
two vectors into one vector

* Socher et al. 2011
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Representations at NLP Levels: Semantics
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Traditional: Lambda calculus
e Carefully engineered functions

e Take as inputs specific other
functions

* No notion of similarity or
fuzziness of language

DL:

* Every word and every phrase
and every logical expression
Is a vector

* a neural network combines
two vectors into one vector

* Bowman et al. 2014

Richard Socher

S:likes(m.,s)

NP:s

I
Mary

VP:Ax € D, [likes(z,s)]

V:Ay € D, [Ax € D, [likes(z,%)]] NP:s
| |

likes Sue

Softmax classifier P(C) = 0.8

gc(),}rﬁ:? E;S;; all reptiles walk vs. some turtles move

Composition all reptiles walk some turtles move

RN(T)N N AN

layers all reptiles walk some turtles move
all reptiles some turtles
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NLP Applications: Sentiment Analysis

e Traditional: Curated sentiment dictionaries combined with either
bag-of-words representations (ignoring word order) or hand-
designed negation features (ain’t gonna capture everything)

e Same deep learning model that was used for morphology, syntax
and logical semantics can be used! = RecursiveNN

This movie does
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Question Answering

e Common: A lot of feature engineering to capture world and
other knowledge, e.g. regular expressions, Berant et al. (2014)

Is main verb trigger?

Yes | No
Condition Regular Exp. Condition | Regular Exp.
Wh- word subjective? | AGENT default (ENABLE|SUPER) ™"
Wh- word object? THEME DIRECT (ENABLE|SUPER)
PREVENT (ENABLE|SUPER)“ PREVENT(ENABLE|SUPER)™

e DL: Same deep learning model that was used for morphology,
syntax, logical semantics and sentiment can be used!

mes_buchanan

° Factsarestoredinvectors | ... -l

- .lﬁaah taylor
miffara_ F henry_harrison

grover_cleveland
benjamin_harrison

ronald_reagan
jimmy_carter

woodrow_wilson

martin_van_buren  william_mckinley
calvin_coolidge

nerstliABofayard-tat

- S "M Wars, rebellions, and battles
A M U.S. presidents
M Prime ministers

TSNE-2
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Machine Translation

Interlingua

e Many levels of translation —
have been tried in the past:

%

%,

5
e Traditional MT systems are &
very large complex systems ;

Figure 1: The Vauquois triangle

e What do you think is the interlingua for the DL approach to
translation?
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Machine Translation

Interlingua

Figure 1: The Vauquois triangle
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Machine Translation

e Source sentence mapped to vector, then output sentence
generated.
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e Sequence to Sequence Learning with Neural Networks by
Sutskever et al. 2014; Luong et al. 2016

 About to replace very complex hand engineered architectures
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Dynamic Memory Network by @ MetaMind

Story

The best way to hope for any chance of enjoying this film is by lowering your
expectations.

Question

What is the sentiment?

Run DMN Get new example
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Representation for all levels: Vectors

e We will learn in the next lecture how we can learn vector
representations for words and what they actually represent.
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e Next week: neural networks and how they can use these vectors
for all NLP levels and many different applications
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