CS224d Deep Learning for Natural Language Processing

Richard Socher, PhD

Welcome

1. CS224d logistics

2. Introduction to NLP, deep learning and their intersection

Richard Socher

3/31/16

Course Logistics

- Instructor: Richard Socher (Stanford PhD, 2014; now Founder/CEO at MetaMind)
- TAs: James Hong, Bharath Ramsundar, Sameep Bagadia, David Dindi, ++
- Time: Tuesday, Thursday 3:00-4:20
- Location: Gates B1
- There will be 3 problem sets (with lots of programming), a midterm and a final project
- For syllabus and office hours, see http://cs224d.stanford.edu/
- Slides uploaded before each lecture, video + lecture notes after

Lecture 1, Slide 3

Richard Socher

Pre-requisites

- Proficiency in Python
 - All class assignments will be in Python. There is a tutorial <u>here</u>
- College Calculus, Linear Algebra (e.g. MATH 19 or 41, MATH 51)
- Basic Probability and Statistics (e.g. CS 109 or other stats course)
- Equivalent knowledge of CS229 (Machine Learning)
 - cost functions,
 - taking simple derivatives
 - performing optimization with gradient descent.

Grading Policy

- 3 Problem Sets: 15% x 3 = 45%
- Midterm Exam: 15%
- Final Course Project: 40%
 - Milestone: 5% (2% bonus if you have your data and ran an experiment!)
 - Attend at least 1 project advice office hour: 2%
 - Final write-up, project and presentation: 33%
 - Bonus points for exceptional poster presentation
- Late policy
 - 7 free late days use as you please
 - Afterwards, 25% off per day late
 - PSets Not accepted after 3 late days per PSet
 - Does not apply to Final Course Project
- Collaboration policy: Read the student code book and Honor Code!
- Understand what is 'collaboration' and what is 'academic infraction'

High Level Plan for Problem Sets

- The first half of the course and the first 2 PSets will be hard
- PSet 1 is in pure python code (numpy etc.) to really understand the basics
- Released on April 4th
- New: PSets 2 & 3 will be in TensorFlow, a library for putting together new neural network models quickly (→ special lecture)
- PSet 3 will be shorter to increase time for final project
- Libraries like TensorFlow (or Torch) are becoming standard tools
- But still some problems

Lecture 1, Slide 6

Richard Socher

What is Natural Language Processing (NLP)?

- Natural language processing is a field at the intersection of
 - computer science
 - artificial intelligence
 - and linguistics.
- Goal: for computers to process or "understand" natural language in order to perform tasks that are useful, e.g.
 - Question Answering
- Fully understanding and representing the meaning of language (or even defining it) is an illusive goal.
- Perfect language understanding is Al-complete

(A tiny sample of) NLP Applications

- Applications range from simple to complex:
- Spell checking, keyword search, finding synonyms
- Extracting information from websites such as
 - product price, dates, location, people or company names
- Classifying, reading level of school texts, positive/negative sentiment of longer documents
- Machine translation
- Spoken dialog systems
- Complex question answering

NLP in Industry

- Search (written and spoken)
- Online advertisement
- Automated/assisted translation
- Sentiment analysis for marketing or finance/trading
- Speech recognition
- Automating customer support

朝流前线

TEL: 8688777-8686966

CONNECT TO TRANSLATOR SERVIC

The Huffington Post recently pointed

Richard So

Why is NLP hard?

- Complexity in representing, learning and using linguistic/ situational/world/visual knowledge
- Jane hit June and then **she** [fell/ran].

Ambiguity: "I made her duck"

What's Deep Learning (DL)?

- Deep learning is a subfield of machine learning
- Most machine learning methods work well because of human-designed representations and input features
 - For example: features for finding named entities like locations or organization names (Finkel, 2010):
- Machine learning becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	\checkmark
Previous Word	\checkmark
Next Word	\checkmark
Current Word Character n-gram	all
Current POS Tag	\checkmark
Surrounding POS Tag Sequence	\checkmark
Current Word Shape	\checkmark
Surrounding Word Shape Sequence	\checkmark
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

Machine Learning vs Deep Learning

What's Deep Learning (DL)?

 Representation learning attempts to automatically learn good features or representations

- Deep learning algorithms attempt to learn (multiple levels of) representation and an output
- From "raw" inputs **x** (e.g. words)

On the history and term of "Deep Learning"

- We will focus on different kinds of **neural networks**
- The dominant model family inside deep learning
- Only clever terminology for stacked logistic regression units?
 - Somewhat, but interesting modeling principles (end-to-end) and actual connections to neuroscience in some cases
- We will not take a historical approach but instead focus on methods which work well on NLP problems now
- For history of deep learning models (starting ~1960s), see: <u>Deep Learning in Neural Networks: An Overview</u> by Schmidhuber

Reasons for Exploring Deep Learning

- Manually designed features are often over-specified, incomplete and take a long time to design and validate
- Learned Features are easy to adapt, fast to learn
- Deep learning provides a very flexible, (almost?) universal, learnable framework for representing world, visual and linguistic information.
- Deep learning can learn unsupervised (from raw text) and supervised (with specific labels like positive/negative)

Reasons for Exploring Deep Learning

- In 2006 deep learning techniques started outperforming other machine learning techniques. Why now?
- DL techniques benefit more from a lot of data
- Faster machines and multicore CPU/GPU help DL
- New models, algorithms, ideas

→ Improved performance (first in speech and vision, then NLP)

Deep Learning for Speech

- The first breakthrough results of "deep learning" on large datasets happened in speech recognition
- Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition Dahl et al. (2010)

Acoustic model	Recog \WER	RT03S FSH	Hub5 SWB
Traditional features	1-pass –adapt	27.4	23.6
Deep Learning	1-pass –adapt	18.5 (-33%)	16.1 (-32%)

Deep Learning for Computer Vision

- Most deep learning groups have (until 2 years ago) focused on computer vision
- Break through paper: ImageNet Classification with Deep Convolutional Neural Networks by Krizhevsky et al. 2012

Zeiler and Fergus (2013) Lecture 1, Slide 19

Richard Socher

Deep Learning + NLP = Deep NLP

 Combine ideas and goals of NLP and use representation learning and deep learning methods to solve them

- Several big improvements in recent years across different NLP
 - levels: speech, morphology, syntax, semantics
 - applications: machine translation, sentiment analysis and question answering

Representations at NLP Levels: Phonology

Traditional: Phonemes

CONSONANTS (PULMONIC)

© 2005 IPA

	Bila	abial	Labio	dental	Dental Alveolar			Postalveolar	Retr	oflex	Palatal		Velar		Uvular		Pharyngeal		Glottal		
Plosive	p	b					t	d		t	d	c	J	k	g	q	G			2	
Nasal		m		ŋ				n			η		ŋ		ŋ		N				
Trill		В						r									R				
Tap or Flap				\mathbf{V}				ſ			r										
Fricative	φ	β	f	V	θ	ð	S	Ζ	∫ 3	Ş	Z	ç	j	Χ	Y	χ	R	ħ	ſ	h	ĥ
Lateral fricative							ł	ţ	•												
Approximant				υ				ĩ			ſ		j		щ						
Lateral approximant								1			l		λ		L						

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

 DL: trains to predict phonemes (or words directly) from sound features and represent them as vectors

Representations at NLP Levels: Morphology

• Traditional: Morphemes

prefix stem suffix un interest ed

• DL:

- every morpheme is a vector
- a neural network combines two vectors into one vector
- Thang et al. 2013

Neural word vectors - visualization

Representations at NLP Levels: Syntax

Traditional: Phrases
Discrete categories like NP, VP

- DL:
 - Every word and every phrase is a vector
 - a neural network combines two vectors into one vector
 - Socher et al. 2011

Lecture 1, Slide 24

Richard Socher

Representations at NLP Levels: Semantics

- Traditional: Lambda calculus
 - Carefully engineered functions
 - Take as inputs specific other functions
 - No notion of similarity or fuzziness of language
- DL:
 - Every word and every phrase and every logical expression is a vector
 - a neural network combines two vectors into one vector
 - Bowman et al. 2014

Richard Socher

3/31/16

NLP Applications: Sentiment Analysis

- Traditional: Curated sentiment dictionaries combined with either bag-of-words representations (ignoring word order) or handdesigned negation features (ain't gonna capture everything)
- Same deep learning model that was used for morphology, syntax and logical semantics can be used! → RecursiveNN

Question Answering

 Common: A lot of feature engineering to capture world and other knowledge, e.g. regular expressions, Berant et al. (2014)

- DL: Same deep learning model that was used for morphology, syntax, logical semantics and sentiment can be used!
- Facts are stored in vectors

Lecture 1, Slide 27

Machine Translation

- Many levels of translation have been tried in the past:
- Traditional MT systems are very large complex systems

Figure 1: The Vauquois triangle

• What do you think is the interlingua for the DL approach to translation?

Machine Translation

Figure 1: The Vauquois triangle

Lecture 1, Slide 29

Richard Socher

Machine Translation

Source sentence mapped to vector, then output sentence generated.

- Sequence to Sequence Learning with Neural Networks by Sutskever et al. 2014; Luong et al. 2016
- About to replace very complex hand engineered architectures

Dynamic Memory Network by MetaMind

Story

The best way to hope for any chance of enjoying this film is by lowering your expectations.

Representation for all levels: Vectors

 We will learn in the next lecture how we can learn vector representations for words and what they actually represent.

 Next week: neural networks and how they can use these vectors for all NLP levels and many different applications