
CS224d	
Deep	Learning		

for	Natural	Language	Processing	
	
	
	
	

Richard	Socher,	PhD	

Welcome	

3/31/16	Richard	Socher	2	

1.  CS224d	logis7cs		

2.  Introduc7on	to	NLP,	deep	learning	and	their	intersec7on	
	

Course	Logis>cs	

•  Instructor:	Richard	Socher		
(Stanford	PhD,	2014;	now	Founder/CEO	at	MetaMind)	

•  TAs:	James	Hong,	Bharath	Ramsundar,	Sameep	Bagadia,	David	
Dindi,	++	

•  Time:	Tuesday,	Thursday	3:00-4:20	
•  Loca7on:	Gates	B1	

•  There	will	be	3	problem	sets	(with	lots	of	programming),		
a	midterm	and	a	final	project		

•  For	syllabus	and	office	hours,	see	h\p://cs224d.stanford.edu/	
•  Slides	uploaded	before	each	lecture,	video	+	lecture	notes	a]er	

3/31/16	Richard	Socher	Lecture	1,	Slide	3	

Pre-requisites	

•  Proficiency	in	Python	
•  All	class	assignments	will	be	in	Python.	There	is	a	tutorial	here		

•  College	Calculus,	Linear	Algebra	(e.g.	MATH	19	or	41,	MATH	51)	

•  Basic	Probability	and	Sta7s7cs	(e.g.	CS	109	or	other	stats	course)	
	

•  Equivalent	knowledge	of	CS229	(Machine	Learning)	
•  cost	func7ons,		
•  taking	simple	deriva7ves		
•  performing	op7miza7on	with	gradient	descent.	

3/31/16	Richard	Socher	Lecture	1,	Slide	4	

Grading	Policy	
•  3	Problem	Sets:	15%	x	3	=	45%		
•  Midterm	Exam:	15%		
•  Final	Course	Project:	40%	

•  Milestone:	5%	(2%	bonus	if	you	have	your	data	and	ran	an	experiment!)	
•  A\end	at	least	1	project	advice	office	hour:	2%	
•  Final	write-up,	project	and	presenta7on:	33%	
•  Bonus	points	for	excep7onal	poster	presenta7on		

•  Late	policy	
•  7	free	late	days	–	use	as	you	please	
•  A]erwards,	25%	off	per	day	late	
•  PSets	Not	accepted	a]er	3	late	days	per	PSet	
•  Does	not	apply	to	Final	Course	Project		

•  Collabora7on	policy:	Read	the	student	code	book	and	Honor	Code!	
•  Understand	what	is	‘collabora7on’	and	what	is	‘academic	infrac7on’		

3/31/16	Richard	Socher	Lecture	1,	Slide	5	

High	Level	Plan	for	Problem	Sets	

•  The	first	half	of	the	course	and	the	first	2	PSets	will	be	hard	

•  PSet	1	is	in	pure	python	code	(numpy	etc.)	to	really	understand	
the	basics	

•  Released	on	April	4th	

•  New:	PSets	2	&	3	will	be	in	TensorFlow,	a	library	for	punng	
together	new	neural	network	models	quickly	(à	special	lecture)	

•  PSet	3	will	be	shorter	to	increase	7me	for	final	project	

•  Libraries	like	TensorFlow	(or	Torch)	are	becoming	standard	tools	
•  But	s7ll	some	problems	

3/31/16	Richard	Socher	Lecture	1,	Slide	6	

What	is	Natural	Language	Processing	(NLP)?	

•  Natural	language	processing	is	a	field	at	the	intersec7on	of		
•  computer	science	
•  ar7ficial	intelligence	
•  and	linguis7cs.		

•  Goal:	for	computers	to	process	or	“understand”	natural	
language	in	order	to	perform	tasks	that	are	useful,	e.g.	
•  Ques7on	Answering	

•  Fully	understanding	and	represen>ng	
the	meaning	of	language	(or	even		
defining	it)	is	an	illusive	goal.	

•  Perfect	language	understanding	is		
AI-complete		

3/31/16	Richard	Socher	Lecture	1,	Slide	7	

NLP	Levels	

3/31/16	Richard	Socher	Lecture	1,	Slide	8	

(A	>ny	sample	of)	NLP	Applica>ons		

•  Applica7ons	range	from	simple	to	complex:	

•  Spell	checking,	keyword	search,	finding	synonyms	

•  Extrac7ng	informa7on	from	websites	such	as		
•  product	price,	dates,	loca7on,	people	or	company	names	

•  Classifying,	reading	level	of	school	texts,	posi7ve/nega7ve	
sen7ment	of	longer	documents	

•  Machine	transla7on	
•  Spoken	dialog	systems	
•  Complex	ques7on	answering	

3/31/16	Richard	Socher	Lecture	1,	Slide	9	

NLP	in	Industry	

•  Search	(wri\en	and	spoken)	

•  Online	adver7sement	

•  Automated/assisted	transla7on	

•  Sen7ment	analysis	for	marke7ng	or	finance/trading	

•  Speech	recogni7on	

•  Automa7ng	customer	support	

3/31/16	Richard	Socher	Lecture	1,	Slide	10	

Why	is	NLP	hard?	

•  Complexity	in	represen7ng,	learning	and	using	linguis7c/
situa7onal/world/visual	knowledge	

•  Jane	hit	June	and	then	she	[fell/ran].	

•  Ambiguity:	“I	made	her	duck”	

3/31/16	Richard	Socher	Lecture	1,	Slide	11	

What’s	Deep	Learning	(DL)?	

•  Deep	learning	is	a	subfield	of	machine	learning	

•  Most	machine	learning	methods	work		
well	because	of	human-designed		
representa7ons	and	input	features	
•  For	example:	features	for	finding		
named	en77es	like	loca7ons	or		
organiza7on	names	(Finkel,	2010):	

•  Machine	learning	becomes	just	op7mizing	
weights	to	best	make	a	final	predic7on	

3/31/16	Richard	Socher	Lecture	1,	Slide	12	

3.3. APPROACH 35

Feature NER TF
Current Word ! !

Previous Word ! !

Next Word ! !

Current Word Character n-gram all length ≤ 6
Current POS Tag !

Surrounding POS Tag Sequence !

Current Word Shape ! !

Surrounding Word Shape Sequence ! !

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Window size 4 size 9

Table 3.1: Features used by the CRF for the two tasks: named entity recognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions). I illustrate this by modeling two
forms of non-local structure: label consistency in the named entity recognition task, and
template consistency in the template filling task. One could imagine many ways of defining
such models; for simplicity I use the form

PM(y|x)∝ ∏
λ∈Λ

θ#(λ ,y,x)
λ (3.1)

where the product is over a set of violation types Λ, and for each violation type λ we
specify a penalty parameter θλ . The exponent #(λ ,s,o) is the count of the number of times
that the violation λ occurs in the state sequence s with respect to the observation sequence
o. This has the effect of assigning sequences with more violations a lower probability.
The particular violation types are defined specifically for each task, and are described in
sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and clearly it would be expensive to do
so. As we will see in the discussion of Gibbs sampling, this will not actually be a problem
for us.

Machine	Learning	vs	Deep	Learning	

Machine Learning in Practice

Describing your data with
features a computer can
understand

Learning
algorithm

Domain	specific,	requires	Ph.D.	
level	talent	

Op7mizing	the	
weights	on	features	

What’s	Deep	Learning	(DL)?	

•  Representa7on	learning	a\empts		
to	automa7cally	learn	good		
features	or	representa7ons	

•  Deep	learning	algorithms	a\empt	to	
learn	(mul7ple	levels	of)		
representa7on	and	an	output	

•  From	“raw”	inputs	x	(e.g.	words)	

3/31/16	Richard	Socher	Lecture	1,	Slide	14	

On	the	history	and	term	of	“Deep	Learning”	

•  We	will	focus	on	different	kinds	of	neural	networks		
•  The	dominant	model	family	inside	deep	learning	

•  Only	clever	terminology	for	stacked	logis7c	regression	units?	
•  Somewhat,	but	interes7ng	modeling	principles	(end-to-end)	
and	actual	connec7ons	to	neuroscience	in	some	cases	

•  We	will	not	take	a	historical	approach	but	instead	focus	on	
methods	which	work	well	on	NLP	problems	now	

•  For	history	of	deep	learning	models	(star7ng	~1960s),	see:		
Deep	Learning	in	Neural	Networks:	An	Overview		
by	Schmidhuber	

3/31/16	Richard	Socher	Lecture	1,	Slide	15	

Reasons	for	Exploring	Deep	Learning	

•  Manually	designed	features	are	o]en	over-specified,	incomplete	
and	take	a	long	7me	to	design	and	validate	

•  Learned	Features	are	easy	to	adapt,	fast	to	learn	

•  Deep	learning	provides	a	very	flexible,	(almost?)	universal,	
learnable	framework	for	represen>ng	world,	visual	and	
linguis7c	informa7on.	

•  Deep	learning	can	learn	unsupervised	(from	raw	text)	and	
supervised	(with	specific	labels	like	posi7ve/nega7ve)	

3/31/16	Richard	Socher	Lecture	1,	Slide	16	

Reasons	for	Exploring	Deep	Learning	

•  In	2006	deep	learning	techniques	started	outperforming	other	
machine	learning	techniques.	Why	now?	

•  DL	techniques	benefit	more	from	a	lot	of	data	
•  Faster	machines	and	mul7core	CPU/GPU	help	DL		
•  New	models,	algorithms,	ideas		

à	Improved	performance	(first	in	speech	and	vision,	then	NLP)	

3/31/16	Richard	Socher	Lecture	1,	Slide	17	

Deep	Learning	for	Speech	

•  The	first	breakthrough	results	of	
“deep	learning”	on	large	datasets	
happened	in	speech	recogni7on	

•  Context-Dependent	Pre-trained	
Deep	Neural	Networks	for	Large	
Vocabulary	Speech	Recogni7on		
Dahl	et	al.	(2010)	

3/31/16	Richard	Socher	Lecture	1,	Slide	18	

Phonemes/Words	

Acous>c	model	 Recog	
\	WER	

RT03S	
FSH	

Hub5	
SWB	

Tradi7onal	
features	

1-pass	
−adapt	

27.4	 23.6	

Deep	Learning	 1-pass	
−adapt	

18.5	
(−33%)	

16.1	
(−32%)	

Deep	Learning	for	Computer	Vision	

•  Most	deep	learning	groups	
have	(un7l	2	years	ago)		
focused	on	computer	vision	

•  Break	through	paper:	
ImageNet	Classifica7on	with	
Deep	Convolu7onal	Neural	
Networks	by	Krizhevsky	et	
al.	2012	

Richard	Socher	 Lecture	1,	Slide	19	19	
Zeiler	and	Fergus	(2013)	

8 Olga Russakovsky* et al.

PASCAL ILSVRC

b
ir
d
s

· · ·

ca
ts

· · ·

d
o
g
s

· · ·

Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

7KH�ZHLJKWV�RI�WKLV�QHXURQ�YLVXDOL]HG

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

Deep	Learning	+	NLP	=	Deep	NLP	

•  Combine	ideas	and	goals	of	NLP	and	use	representa7on	learning	
and	deep	learning	methods	to	solve	them	

•  Several	big	improvements	in	recent	years	across	different	NLP		
•  levels:	speech,	morphology,	syntax,	seman7cs	
•  applica>ons:	machine	transla7on,	sen7ment	analysis	and	
ques7on	answering	

3/31/16	Richard	Socher	Lecture	1,	Slide	20	

Representa>ons	at	NLP	Levels:	Phonology	

•  Tradi7onal:	Phonemes	

•  DL:	trains	to	predict	phonemes	(or	words	directly)	from	sound	
features	and	represent	them	as	vectors	

3/31/16	Richard	Socher	Lecture	1,	Slide	21	

 THE INTERNATIONAL PHONETIC ALPHABET (revised to 2005)
CONSONANTS (PULMONIC)

´

A Å

i y È Ë ¨ u

Pe e� Ø o

E { ‰ ø O

a ”

å

I Y U

 Front Central Back

Close

Close-mid

Open-mid

Open
Where symbols appear in pairs, the one
to the right represents a rounded vowel.

œ

ò

Bilabial Labiodental Dental Alveolar Post alveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive p b t d Ê � c Ô k g q G /
Nasal m µ n = � N –
Trill ı r R
Tap or Flap v | «
Fricative F B f v T D s ¬¬z S Z ß � ç J x V X Â © ? h H
Lateral
fricative Ò L
Approximant ¥ ® ’ j ˜
Lateral
approximant l Ò ¥ K

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

SUPRASEGMENTALS

VOWELS

OTHER SYMBOLS

Clicks Voiced implosives Ejectives

> Bilabial � Bilabial ’ Examples:

˘ Dental Î Dental/alveolar p’ Bilabial

! (Post)alveolar ˙ Palatal t’ Dental/alveolar

¯ Palatoalveolar ƒ Velar k’ Velar

� Alveolar lateral Ï Uvular s’ Alveolar fricative

 " Primary stress
 Æ Secondary stress

ÆfoUn´"tIS´n
 … Long e…
 Ú Half-long eÚ

 * Extra-short e*
˘ Minor (foot) group

� Major (intonation) group

 . Syllable break ®i.œkt

 § Linking (absence of a break)

 TONES AND WORD ACCENTS
 LEVEL CONTOUR

e¬_or â Extra
high e

ˆ

or ä Rising

e! ê High e$ ë Falling

e@ î Mid e% ü High
rising

e~ ô Low efi ï Low
rising

e— û Extra
low e& ñ$ Rising-

falling

Õ Downstep ã Global rise

õ Upstep Ã Global fall

© 2005 IPA

 DIACRITICS Diacritics may be placed above a symbol with a descender, e.g. N(

 9 Voiceless n9 d9 ª Breathy voiced bª aª 1 Dental t¬1 d1
 3 Voiced s3 t¬3 0 Creaky voiced b0 a0 ¡ Apical t¬¡ d¡
 Ó Aspirated tÓ dÓ £ Linguolabial t¬£ ¬d£ 4 Laminal t¬4 d4
 7 More rounded O7 W Labialized tW dW) Nasalized e)
 ¶ Less rounded O¶ ¨ Palatalized t¨ d¨ ˆ Nasal release dˆ
 ™ Advanced u™ ¹ Velarized t¹ ¬d¹ ¬ Lateral release d¬
 2 Retracted e2 � Pharyngealized t� ¬¬d� } No audible release d}
¬ ¬· Centralized e· ù Velarized or pharyngealized :
 + Mid-centralized e+ 6 Raised e6 ¬(®6 = voiced alveolar fricative)

 ` Syllabic n` § Lowered e§ (B§ = voiced bilabial approximant)

 8 Non-syllabic e8 5 Advanced Tongue Root e5
 ± Rhoticity ´± a± � Retracted Tongue Root e�

� Voiceless labial-velar fricative Ç Û Alveolo-palatal fricatives

w ¬ Voiced labial-velar approximant » Voiced alveolar lateral flap

Á Voiced labial-palatal approximant Í Simultaneous S and x
Ì Voiceless epiglottal fricative

¬¿ ¬Voiced epiglottal fricative
Affricates and double articulations
can be represented by two symbols

¬÷ ¬ Epiglottal plosive
 joined by a tie bar if necessary.

kp ts

(

(

Representa>ons	at	NLP	Levels:	Morphology	

•  Tradi7onal:	Morphemes 	 	prefix	 	stem	 				suffix	
	 	 	 	 	un	 	interest			ed	

•  DL:		
•  every	morpheme	is	a	vector	
•  a	neural	network	combines		
two	vectors	into	one	vector	

•  Thang	et	al.	2013	

3/31/16	Richard	Socher	Lecture	1,	Slide	22	

!"
!"#

#$%&!"'&(
$%&

)*
$'(

!"#$%&!"'&()*
$%&

!
!
! "

!

!
!
! "

!

!"#$%&!"'&(
$%&

Figure 1: Morphological Recursive Neural Net-
work. A vector representation for the word “un-
fortunately” is constructed from morphemic vec-
tors: unpre, fortunatestm, lysuf. Dotted nodes are
computed on-the-fly and not in the lexicon.

3 Morphological RNNs

Our morphological Recursive Neural Network
(morphoRNN) is similar to (Socher et al., 2011b),
but operates at the morpheme level instead of at
the word level. Specifically, morphemes, the mini-
mum meaning-bearing unit in languages, are mod-
eled as real-valued vectors of parameters, and are
used to build up more complex words. We assume
access to a dictionary of morphemic analyses of
words, which will be detailed in Section 4.

Following (Collobert and Weston, 2008), dis-
tinct morphemes are encoded by column vectors
in a morphemic embedding matrix We ∈ Rd×|M|,
where d is the vector dimension and M is an or-
dered set of all morphemes in a language.

As illustrated in Figure 1, vectors of morpho-
logically complex words are gradually built up
from their morphemic representations. At any lo-
cal decision (a dotted node), a new parent word
vector (p) is constructed by combining a stem vec-
tor (xstem) and an affix vector (xaffix) as follow:

p = f(Wm[xstem;xaffix] + bm) (1)

Here, Wm ∈ Rd×2d is a matrix of morphemic pa-
rameters while bm ∈ Rd×1 is an intercept vector.
We denote an element-wise activation function as
f , such as tanh. This forms the basis of our mor-
phoRNN models with θ = {We,Wm, bm} being
the parameters to be learned.

3.1 Context-insensitive Morphological RNN
Our first model examines how well morphoRNNs
could construct word vectors simply from the mor-
phemic representation without referring to any
context information. Input to the model is a refer-
ence embedding matrix, i.e. word vectors trained
by an NLM such as (Collobert and Weston, 2008)

and (Huang et al., 2012). By assuming that these
reference vectors are right, the goal of the model
is to construct new representations for morpholog-
ically complex words from their morphemes that
closely match the corresponding reference ones.

Specifically, the structure of the context-
insensitive morphoRNN (cimRNN) is the same as
the basic morphoRNN. For learning, we first de-
fine a cost function s for each word xi as the
squared Euclidean distance between the newly-
constructed representation pc(xi) and its refer-
ence vector pr(xi): s (xi) = ∥pc(xi)− pr(xi)∥22.

The objective function is then simply the sum of
all individual costs over N training examples, plus
a regularization term, which we try to minimize:

J(θ) =
N∑

i=1

s (xi) +
λ

2
∥θ∥22 (2)

3.2 Context-sensitive Morphological RNN

The cimRNN model, though simple, is interesting
to attest if morphemic semantics could be learned
solely from an embedding. However, it is lim-
ited in several aspects. Firstly, the model has
no chance of improving representations for rare
words which might have been poorly estimated.
For example, “distinctness” and “unconcerned”
are very rare, occurring only 141 and 340 times
in Wikipedia documents, even though their corre-
sponding stems “distinct” and “concern” are very
frequent (35323 and 26080 respectively). Trying
to construct exactly those poorly-estimated word
vectors might result in a bad model with parame-
ters being pushed in wrong directions.

Secondly, though word embeddings learned
from an NLM could, in general, blend well both
the semantic and syntactic information, it would
be useful to explicitly model another kind of syn-
tactic information, the word structure, as we train
our embeddings. Motivated by these limitations,
we propose a context-sensitive morphoRNN (csm-
RNN) which integrates RNN structures into NLM
training, allowing for contextual information be-
ing taken into account in learning morphemic
compositionality. Specifically, we adopt the NLM
training approach proposed in (Collobert et al.,
2011) to learn word embeddings, but build rep-
resentations for complex words from their mor-
phemes. During learning, updates at the top level
of the neural network will be back-propagated all
the way till the morphemic layer.

Neural	word	vectors	-	visualiza>on	

23	

Representa>ons	at	NLP	Levels:	Syntax	

•  Tradi7onal:	Phrases	
Discrete	categories	like	NP,	VP	

•  DL:		
•  Every	word	and	every	phrase	
is	a	vector	

•  a	neural	network	combines		
two	vectors	into	one	vector	

•  Socher	et	al.	2011	

3/31/16	Richard	Socher	Lecture	1,	Slide	24	

Representa>ons	at	NLP	Levels:	Seman>cs	

•  Tradi7onal:	Lambda	calculus	
•  Carefully	engineered	func7ons	
•  Take	as	inputs	specific	other	
func7ons	

•  No	no7on	of	similarity	or	
fuzziness	of	language	

•  DL:		
•  Every	word	and	every	phrase	
and	every	logical	expression		
is	a	vector	

•  a	neural	network	combines		
two	vectors	into	one	vector	

•  Bowman	et	al.	2014	
3/31/16	Richard	Socher	Lecture	1,	Slide	25	

Much of the theoretical work on natural lan-
guage inference (and some successful imple-
mented models; MacCartney and Manning 2009;
Watanabe et al. 2012) involves natural logics,
which are formal systems that define rules of in-
ference between natural language words, phrases,
and sentences without the need of intermediate
representations in an artificial logical language.
In our first three experiments, we test our mod-
els’ ability to learn the foundations of natural lan-
guage inference by training them to reproduce the
behavior of the natural logic of MacCartney and
Manning (2009) on artificial data. This logic de-
fines seven mutually-exclusive relations of syn-
onymy, entailment, contradiction, and mutual con-
sistency, as summarized in Table 1, and it pro-
vides rules of semantic combination for project-
ing these relations from the lexicon up to com-
plex phrases. The formal properties of this sys-
tem are now well-understood (Icard and Moss,
2013a; Icard and Moss, 2013b). The first exper-
iment using this logic covers reasoning with the
bare logical relations (§3), the second extends this
to reasoning with statements constructed compo-
sitionally from recursive functions (§4), and the
third covers the additional complexity that results
from quantification (§5). Though the performance
of the plain TreeRNN model is somewhat poor
in our first experiment, we find that the stronger
TreeRNTN model generalizes well in every case,
suggesting that it has learned to simulate our target
logical concepts.

The experiments with simulated data provide a
convincing demonstration of the ability of neural
networks to learn to build and use semantic repre-
sentations for complex natural language sentences
from reasonably-sized training sets. However, we
are also interested in the more practical question of
whether they can learn these representations from
naturalistic text. To address this question, we ap-
ply our models to the SICK entailment challenge
data in §6. The small size of this corpus puts data-
hungry NN models like ours at a disadvantage,
but we are nonetheless able to achieve competi-
tive performance on it, surpassing several submit-
ted models with significant hand-engineered task-
specific features and our own NN baseline. This
suggests that the representational abilities that we
observe in the previous sections are not limited to
carefully circumscribed tasks. We conclude that
TreeRNTN models are adequate for typical cases

P (@) = 0.8

all reptiles walk vs. some turtles move

Softmax classifier

Comparison
N(T)N layer

Composition
RN(T)N
layers

Pre-trained or randomly initialized learned word vectors
all reptiles

all reptiles walk

all reptiles walk

some turtles

some turtles move

some turtles move

Figure 1: In our model, two separate tree-
structured networks build up vector representa-
tions for each of two sentences using either NN
or NTN layer functions. A comparison layer then
uses the resulting vectors to produce features for a
classifier.

of natural language inference, and that there is not
yet any clear level of inferential complexity for
which other approaches work and NN models fail.

2 Tree-structured neural networks

We limit the scope of our experiments in this paper
to neural network models that adhere to the lin-
guistic principle of compositionality, which says
that the meanings for complex expressions are de-
rived from the meanings of their parts via specific
composition functions (Partee, 1984; Janssen,
1997). In our distributed setting, word meanings
are embedding vectors of dimension n. A learned
composition function maps pairs of them to single
phrase vectors of dimension n, which can then be
merged again to represent more complex phrases,
forming a tree structure. Once the entire sentence-
level representation has been derived at the top of
the tree, it serves as a fixed-dimensional input for
some subsequent layer function.

To apply these recursive models to our task, we
propose the tree pair model architecture depicted
in Fig. 1. In it, the two phrases being compared are
processed separately using a pair of tree-structured
networks that share a single set of parameters. The
resulting vectors are fed into a separate compari-
son layer that is meant to generate a feature vec-
tor capturing the relation between the two phrases.
The output of this layer is then given to a softmax
classifier, which produces a distribution over the
seven relations represented in Table 1.

For the sentence embedding portions of the net-
work, we evaluate both TreeRNN models with the
standard NN layer function (1) and those with the

NLP	Applica>ons:	Sen>ment	Analysis	

•  Tradi7onal:	Curated	sen7ment	dic7onaries	combined	with	either	
bag-of-words	representa7ons	(ignoring	word	order)	or	hand-
designed	nega7on	features	(ain’t	gonna	capture	everything)	

•  Same	deep	learning	model	that	was	used	for	morphology,	syntax	
and	logical	seman7cs	can	be	used!	à	RecursiveNN		

	

3/31/16	Richard	Socher	Lecture	1,	Slide	26	

Ques>on	Answering	

•  Common:	A	lot	of	feature	engineering	to	capture	world	and	
other	knowledge,		e.g.	regular	expressions,	Berant	et	al.	(2014)	

•  DL:	Same	deep	learning	model	that	was	used	for	morphology,	
syntax,	logical	seman7cs	and	sen7ment	can	be	used!	

•  Facts	are	stored	in	vectors	

Lecture	1,	Slide	27	

Type Example # (%)
Dependency Q: What can the splitting of water lead to? 407 (69.57%)

a: Light absorption
b: Transfer of ions

Temporal Q: What is the correct order of events? 57 (9.74%)
a: PDGF binds to tyrosine kinases, then cells divide, then wound healing
b: Cells divide, then PDGF binds to tyrosine kinases, then wound healing

True-False Q: Cdk associates with MPF to become cyclin 121 (20.68%)
a: True
b: False

Table 3: Examples and statistics for each of the three coarse types of questions.

Is main verb trigger?

Condition Regular Exp.
Wh- word subjective? AGENT
Wh- word object? THEME

Condition Regular Exp.
default (ENABLE|SUPER)+
DIRECT (ENABLE|SUPER)
PREVENT (ENABLE|SUPER)⇤PREVENT(ENABLE|SUPER)⇤

Yes No

Figure 3: Rules for determining the regular expressions for queries concerning two triggers. In each table, the condition
column decides the regular expression to be chosen. In the left table, we make the choice based on the path from the root to
the Wh- word in the question. In the right table, if the word directly modifies the main trigger, the DIRECT regular expression
is chosen. If the main verb in the question is in the synset of prevent, inhibit, stop or prohibit, we select the PREVENT regular
expression. Otherwise, the default one is chosen. We omit the relation label SAME from the expressions, but allow going
through any number of edges labeled by SAME when matching expressions to the structure.

that we expand using WordNet.

The final step in constructing the query is to
identify the regular expression for the path con-
necting the source and the target. Due to paucity
of data, we do not map a question and an answer
to arbitrary regular expressions. Instead, we con-
struct a small set of regular expressions, and build
a rule-based system that selects one. We used the
training set to construct the regular expressions
and we found that they answer most questions (see
Section 6.4). We determine the regular expression
based on whether the main verb in the sentence is
a trigger and whether the source and target of the
path are triggers or arguments. Figure 3 shows the
possible regular expressions and the procedure for
choosing one when both the source and target are
triggers. If either of them are argument nodes, we
append the appropriate semantic role to the regu-
lar expression, based on whether the argument is
the source or the target of the path (or both).

True-false questions are treated similarly, ex-
cept that both source and target are chosen from
the question. For temporal questions, we seek to
identify the ordering of events in the answers. We
use the keywords first, then, or simultaneously to
identify the implied order in the answer. We use
the regular expression SUPER+ for questions ask-
ing about simultaneous events and ENABLE+ for
those asking about sequential events.

5.3 Answering Questions

We match the query of an answer to the process
structure to identify the answer. In case of a match,
the corresponding answer is chosen. The matching
path can be thought of as a proof for the answer.

If neither query matches the graph (or both do),
we check if either answer contradicts the struc-
ture. To do so, we find an undirected path from
the source to the target. In the event of a match, if
the matching path traverses any ENABLE edge in
the incorrect direction, we treat this as a refutation
for the corresponding answer and select the other
one. In our running example, in addition to the
valid path for the second query, for the first query
we see that there is an undirected path from split
to absorb through transfer that matches the first
query. This tells us that light absorption cannot
be the answer because it is not along a causal path
from split.

Finally, if none of the queries results in a match,
we look for any unlabeled path between the source
and the target, before backing off to a dependency-
based proximity baseline described in Section 6.
When there are multiple aligning nodes in the
question and answer, we look for any proof or
refutation before backing off to the baselines.

Machine	Transla>on	

•  Many	levels	of	transla7on		
have	been	tried	in	the	past:	

•  Tradi7onal	MT	systems	are		
very	large	complex	systems		

•  What	do	you	think	is	the	interlingua	for	the	DL	approach	to	
transla7on?	

3/31/16	Richard	Socher	Lecture	1,	Slide	28	

Machine	Transla>on	

3/31/16	Richard	Socher	Lecture	1,	Slide	29	

Machine	Transla>on	

•  Source	sentence	mapped	to	vector,	then	output	sentence	
generated.		

•  Sequence	to	Sequence	Learning	with	Neural	Networks	by	
Sutskever	et	al.	2014;	Luong	et	al.	2016	

•  About	to	replace	very	complex	hand	engineered	architectures	

3/31/16	Richard	Socher	Lecture	1,	Slide	30	

sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and fixed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-
dimensional vector representation, and then to use another LSTM to extract the output sequence
from that vector (fig. 1). The second LSTM is essentially a recurrent neural network languagemodel
[28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully
learn on data with long range temporal dependencies makes it a natural choice for this application
due to the considerable time lag between the inputs and their corresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entire input sentence to vector, and is related to Cho et al. [5] although
the latter was used only for rescoring hypotheses produced by a phrase-based system. Graves [10]
introduced a novel differentiable attention mechanism that allows neural networks to focus on dif-
ferent parts of their input, and an elegant variant of this idea was successfully applied to machine
translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another popular
technique for mapping sequences to sequences with neural networks, but it assumes a monotonic
alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task,
we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 384M parameters and 8,000 dimensional state each) using a simple left-to-right beam-
search decoder. This is by far the best result achieved by direct translation with large neural net-
works. For comparison, the BLEU score of an SMT baseline on this dataset is 33.30 [29]. The 34.81
BLEU score was achieved by an LSTM with a vocabulary of 80k words, so the score was penalized
whenever the reference translation contained a word not covered by these 80k. This result shows
that a relatively unoptimized small-vocabulary neural network architecture which has much room
for improvement outperforms a phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline by
3.2 BLEU points and is close to the previous best published result on this task (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not the target sentences in the training and test
set. By doing so, we introduced many short term dependencies that made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different

2

3/31/16	Richard	Socher	Lecture	1,	Slide	31	

Representa>on	for	all	levels:	Vectors	

•  We	will	learn	in	the	next	lecture	how	we	can	learn	vector	
representa7ons	for	words	and	what	they	actually	represent.	

•  Next	week:	neural	networks	and	how	they	can	use	these	vectors	
for	all	NLP	levels	and	many	different	applica7ons	

3/31/16	Richard	Socher	Lecture	1,	Slide	32	

