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Overview Today — Mostly open for questions!

e Linguistic Background: Levels and tasks

Word Vectors

e Backprop

RNNs
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Overview of linguistic levels

Phonetic/Phonological Analysis OCR/Tokenization

Morphological analysis

Syntactic analysis

Semantic Interpretation

Discourse Processing
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Tasks: NER

Named Entity Recognition

The acquisition will beef up Markham , Ontario-based Magna ‘s North American
U-LOCATION  U-MISC U-ORGANIZATION ~ B-MISC L-MISC

car and truck seating business , allowing it to better compete with Johnson
B-ORGANIZATION

Controls Inc and Lear Corp. Around 2,000 of Indonesia
I-ORGANIZATION L-ORGANIZATION B-ORGANIZATION L-ORGANIZATION U-LOCATION

's controversial Timor national car made by Kia Motor Corp of
U-MISC B-ORGANIZATION I-ORGANIZATION L-ORGANIZATION

South Korea  arrived at Jakarta 's Tanjung Priok port on Thursday .
B-LOCATION L-LOCATION U-LOCATION  B-LOCATION L-LOCATION
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Tasks: POS

Part of Speech Tagging

Acting on a tip from spelunkers two years ago, scientists in South Africa discovered
NNP IN DTNNIN  CD CD NNS JJ NNS INNNP  NNP  VBD

what the cavers had only dimly glimpsed through a crack in a limestone wall deep in
WP DT NNS VBD RB RB  -NONE- IN DTNN  IN DT JJ NN RB IN

the Rising Star Cave: lots and lots of old bones. The remains covered the earthen floor
DT NNP  NNP JJ NNS CC NNSIN JJ NNP DT VBZ VBN DT W NN

beyond the narrow opening. This was, the scientists concluded, a large, dark chamber
IN DT W NNP DT VBZ DT NNS -NONE- DT JJ JJ NN

for the dead of a previously unidentified species of the early human lineage — Homo
IN DT JJ IN DTRB JJ NNS IN DT JJ W NNP NN NN

naledi.
NNP
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Tasks: Sentiment analysis

Sentiment Analysis

the best way to hope for any chance of enjoying this film is
by lowering your expectations .

negative
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Machine Translation

Original Translation

| am a man of yesterday's culture. ich bin ein Mann der gestrigen Kultur .
Explain

| grew up on examples of artists who lived ich wuchs an Beispielen von Kinstlern , die
poor and died in poverty, refused money for arm lebten und in Armut starben .
the sake of painting. Explain

This is the culture I'm for. das ist die Kultur , fur die ich bin .
Explain

There is such a thing: an official for culture. es gibt so etwas : ein Beamter fur die Kultur

Explain
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Skip-gram

INPUT PROJECTION ~ OUTPUT

w(t-2)

» Task: given a center word, predict its

w(t-1)
context words o 7/4

w(t) —

> For each word, we have an “input vector” L 4\7
w(t+1)

vy and an “output vector” v,

w(t+2)



Skip-gram v.s. CBOW

Skip-gram

INPUT PROJECTION ~ OUTPUT

w(t-2)
w(t-1)
w(t) D—>
w(t+1)

w(t+2)

Task Center word — Context

r Vs

1

CBOW

INPUT  PROJECTION OuTPUT

w(t-2)
w(t-1)

w(t)
w(t+1)

w(t+2)

Context — Center word

o Vwii Ywis T VWi+C)

All word2vec figures are from http://arxiv.org/pdf/1301.3781.pdf



word2vec as matrix factorization (conceptually)
» Matrix factorization

M ~ | AT [ B ]kxn

nxn nxk
~ 3l h.

» Imagine M is a matrix of counts for events co-occurring, but
we only get to observe the co-occurrences one at a time. E.g.

1
M=10
1

w O O
oON B

but we only see

(1,1), (23), (3.2), (23), (1.3), ...



word2vec as matrix factorization (conceptually)
Mj; =~ a,Tbj

» Whenever we see a pair (i, ) co-occur, we try to increasing
3] bj

» We also try to make all the other inner-products smaller to
account for pairs never observed (or unobserved yet), by
decreasing aI,-bJ- and a,TbﬁJ-

» Remember from the lecture that the word co-occurrence
matrix usually captures the semantic meaning of a word?
For word2vec models, roughly speaking, M is the windowed
word co-occurrence matrix, A is the output vector matrix, and
B is the input vector matrix.

» Why not just use one set of vectors? It's equivalent to A= B
in our formulation here, but less constraints is usually easier
for optimization.



GloVe v.s. word2vec

Fast Efficient  Quality Captures
training usage of affected complex
statistics by size of patterns

corpora
Direct
orediction Scales No No* Yes
(word2vec) with size
of corpus
GloVe
Yes Yes No Yes

* Skip-gram and CBOW are qualitatively different when it comes to smaller corpora
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Overview

- Neural Network Example

+ Terminology

- Example 1:
- Forward Pass

- Backpropagation Using Chain Rule
- What is delta? From Chain Rule to Modular Error Flow

- Example 2:
- Forward Pass

- Backpropagation



Neural Networks

- One of many different types of non-linear classifiers (i.e.
leads to non-linear decision boundaries)

- Most common design involves the stacking of affine
transformations followed by point-wise (element-wise)
non-linearity
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An example of a neural network

- This is a 4 layer neural network.
- 2 hidden-layer neural network.
- 2-10-10-3 neural network (complete architecture defn.)
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Our first example

Layer 1 Layer 2 Layer 3

- This is a 3 layer neural network
- 1 hidden-layer neural network
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Our first example:

Te rmInOIOgy Layer 1 Layer 2 Layer 3

Model Input Model Output
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Our first example:

Terminology

Model Input

Layer 1 Layer 2

Activation Units

Layer 3

Model Output
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Our first example:
Activation Unit Terminology

We draw this This is actually what's going on

20 = W, a0+ W W0+ W, Wg 0+ W 1g,0
a,(?) is the 1% activation unit of layer 2
a,l(2) — 0‘(21(2))



Our first example:
Forward Pass

Z1<1) = I
) =,
7l =
7t = g,

CS224D: Deep Learning for NLP 9




Our first example:
Forward Pass

0, = 2,
a, ) = 2,1
0, = 2,0
0, = 2,0
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Our first example:
Forward Pass
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Our first example:
Forward Pass
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Our first example:
Forward Pass

A2) =) g(1)

Affine transformation
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Our first example:
Forward Pass

a,(2> - 0‘(2(2>)
Point-wise/Element-wise non-linearity
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Our first example:
Forward Pass

A3) = W2 q(2)
Affine transformation
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Our first example:
Forward Pass
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Our first example:
Backpropagation
using chain rule

Let us try to calculate the error gradient wrt W,
Thus we want to find:

ds
(1)
oW,
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Our first example:
Backpropagation
using chain rule

Let us try to calculate the error gradient wrt W,
Thus we want to find:

s 0z 0a? 9z
0z 9a'? 922 aw,
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Our first example:
Backpropagation
using chain rule

This|is simply 1

T~

ds 02> 0al? 9z
0z>0a'? 922 aw, M
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Our first example:
Backpropagation
using chain rule

0z> 9a'? 9z%
dal? az» aw

W a? + WPa?)0a? 927
(2) (2) (1)
dal 0z aw
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Our first example:
Backpropagation
using chain rule
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Our first example:
Backpropagation
using chain rule
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Our first example:
Backpropagation
using chain rule

(1) (1) (1) (1) (1) (1) (1) (1)
W(Z)a’( (2))6([/1/11 + Wiy a, " + Wiz ay” + W, )
11 6W(1)
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Our first example:
Backpropagation
using chain rule

(2) 1 (2) (1)
Wiio (Zl )a4
\ J

5,2




Our first example:
Backpropagation
Observations

We got error
gradient wrt W,,(1)

Required:
* the signal forwarded by W,V = q,(!

* the error propagating backwards W,
 the local gradient 0’(z?)
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Our first example:
Backpropagation =
Observations ”

We tried to get error
gradient wrt W,,(1

Required: X J
the signal forwarded by W,V = ¢,
the error propagating backwards W,
the local gradient 0”(2,(?)

We can do this for (6
all of W:; O

N
r
(as outer product) 21(2)]{ a,
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Our first example:
Let us define 0
(2) (2) (2)
+ Zl :@ al -+ :61 @:
Recall that this is forward pass This is the backpropagation

0, is the error flowing backwards at the same
point where z(? passed forwards. Thus it is simply the gradient
of the error wrt 2.
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Our first example:

Backpropagation using error vectors

The chain rule of differentiation just boils
down very simple patterns in error
backpropagation:

1. An error z flowing backwards passes a
neuron by getting amplified by the local
gradient.

2. An error 0 that needs to go through an
affine transformation distributes itself in

the way signal combined in forward pass.

Orange = Backprop.
Green = Fwd. Pass

\or
Ow,
a,w; Y O
ow,
oWy
Ow,
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Our first example:
Backpropagation using error vectors

L0 e e) I e A9 | g
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Our first example:
Backpropagation using error vectors

FOINNPTS A2 q® 90 | s
- 1 — Wt P> b—— We 1 1 >

Thisis ¥ — Y for softmax
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Our first example:
Backpropagation using error vectors

PO I P, A2 o A0 | s
- 1 — Wt P> b—— We 1 1 >

Gradient w.r.t W2 = 0B)g2)T



Our first example:
Backpropagation using error vectors

2(1)

-

a(l

R

W)

2(2)

R

WT d3)
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al?
—

WUE

~(5)
—

--Reusing the 5% for downstream updates.

--Moving error vector across affine transformation simply requires multiplication with

the transpose of forward matrix
--Notice that the dimensions will line up perfectly too!

(|

OB)
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Our first example:
Backpropagation using error vectors

PO I P, A2 o L9 | s
- 1 — Wt P> b—— We 1 1 >

I

W()T d3)

--Moving error vector across point-wise non-linearity requires point-wise
multiplication with local gradient of the non-linearity
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Our first example:
Backpropagation using error vectors

PO I P, A2 o A0 | s
- 1 — Wt P> b—— We 1 1 >

WT §2) 52)

Gradient w.r.t W) = d(2)g)T
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Our second example (4-layer network):
Backpropagation using error vectors

S

1 1 2 2 3N 3 |

2 o) CLIGEN e 01(4 wer 2 o 1e ) 24 rsnoj)t( I,
—
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Our second example (4-layer network):
Backpropagation using error vectors

)
1 1 2 2 3) 3 |
Z(_i 1 a,( ) Wi _Z_(_>) - a,( ) W z( ) - a,( ) W) 2(4) :noj)z yp
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Our second example (4-layer network):
Backpropagation using error vectors

Grad WG = 6@ g3 T

S
1 1 2 2 3N 3 |
2 o) CLIGEN e g-QLL»LW@-EL;crELié weo 125 ;gi I,
—

W(3) T4 o)
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Our second example (4-layer network):
Backpropagation using error vectors

S

1 1 2 2 3N 3 |

2 o) CLIGEN e 01(4 wer 2 o 1e ) 24 rsnoj)t( I,
—

OB = o’ ( Z(3)) © W)TH4) W(3)TH4)
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Our second example (4-layer network):
Backpropagation using error vectors

Grad W® = 63 g@T

S

1 1 2 2 3N 3 |

2 o) CLIGEN e 01(4 wer 2 o 1e ) 24 rsnoj)t( I,
—

W(2)TSH3) o)
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Our second example (4-layer network):
Backpropagation using error vectors

S

1 1 2 2 3N 3 |

2 o) CLIGEN e 01(4 wer 2 o 1e ) 24 rsnoj)t( I,
—

WTS)
5= o7 (42)® WTEE)
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Our second example (4-layer network):
Backpropagation using error vectors

Grad W) = 62 qM1)T

S

1 1 2 2 3N 3 |

2 o) CLIGEN e 01(4 wer 2 o 1e ) 24 rsnoj)t( I,
—

W TH?2) o(2)
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Our second example (4-layer network):
Backpropagation using error vectors

Grad wrt input vector = W(TH(2)

S

1 1 2 2 3N 3 |

2 o) CLIGEN e 01(4 wer 2 o 1e ) 24 rsnoj)t( I,
—

S

WTH2) WTH?2)
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Outline

Backpropagation (continued)
RNN Structure
RNN Backpropagation

Backprop on a DAG
Example: Gated Recurrent Units (GRUSs)
GRU Backpropagation



Outline

Backpropagation (continued)



Basic RNN Structure
)
()
()

» Basic RNN ("Elman network")
» You’ve seen this on Assignment #2 (and also in Lecture #5)



Basic RNN Structure
@)
()
)

» Two layers between input and prediction, plus hidden state
h® = sigmoid (Hh“*” +Wa® 4 bl)

7" — softmax (Uh(t>+b2)



Unrolled RNN

» Helps to think about as “unrolled” network: distinct nodes
for each timestep

» Just do backprop on this! Then combine shared gradients.



Backprop on RNN

» Usual cross-entropy loss (k-class):

P(y® =j |0, a®) = g
JO0) = —Zy log "

» Just do backprop on this! First timestep (7 = 1):

oJ® oJ®
oU Oba

aJ® 0J® oJ®) aJ®




Backprop on RNN

» First timestep (s = 0):

aJW a0J®

oU by
2J® 0J® 0J® 0J®
OH |y Oh) oW |y 0z
» Backintime (s=1,2,...,7—1)
0J® dJM oJW 0J®
OH |;_y Oh(t=s) W |,y Hx(t—s)



Backprop on RNN

Yuck, that’s a lot of math!

» Actually, it's not so bad.
» Solution: error vectors (6)



Making sense of the madness

» Chain rule to the rescue!
» o) = UL® + by
» ¢ = softmax(a®)



Making sense of the madness

» Chain rule to the rescue!

» o = UL® + by

» ) = softmax(a®)

» Gradient is transpose of Jacobian:

oI\ e kx1
VaJ = M =Yy -y =0 eR



Making sense of the madness

» Chain rule to the rescue!

» o = UL® + by

» ) = softmax(a®)

» Gradient is transpose of Jacobian:

oI\ e kx1
VaJ = % =Yy -y =0 eR

» Now dimensions work out:

8J®  Ha®

9a®  oby (§QNT g RUXK)-(kxk) — rixk




Making sense of the madness

» Chain rule to the rescue!

» o) = UL® + by

» ) = softmax(a®)

» Matrix dimensions get weird:

da®
e ka (kxDy)
ou



Making sense of the madness

» Chain rule to the rescue!

» o) = UR® + by

» ) = softmax(a®)

» Matrix dimensions get weird:

da®
e ka (kxDy)
ou

» But we don’t need fancy tensors:

T
vy J® = <8J(t) ) ‘9a(t)> = §OORT ¢ RhxDn
~\da® U |

» NumPy: self.grads.U += outer(d2, hs[t])



Going deeper

» Really just need one simple pattern:
» 2O = gt 4 W 4 py

» A = f(z)

» Compute error delta (s =0,1,2,...):

» From top: 6(V) = [h(t) o(1-— h(t))] o UTs@®)
» Deeper: 67 = [h(=9) o (1 — h(t=9))] 0 HT§(t=s+D)



Going deeper

v

Really just need one simple pattern:
20 = FRED L W) 4 by
) = f(z1)
Compute error delta (s =0,1,2,...):
» From top: 6®) = [n() o (1 — h(")] o UT5D®
» Deeper: 67 = [h(=9) o (1 — h(t=9))] 0 HT§(t=s+D)

These are just chain-rule expansions!

v

v

v

v

oJ®  9J®  9a®  9nt) (T
920~ 9a® an® 9.0




Going deeper

» These are just chain-rule expansions!

oJ® OJ®  9a® R\ 9z® ® 7021
b1 |y \9a®  On® 9z | dby b,
oJ® 2J®  9a® an®Y\ 9z 50 7021
OH |~ \ 0a® 0n®) 9.0 | 0H — OH

oJW (910 9a) oM\ 90 (50T 9z
02=1)  \ 9a®  on®) 9z | 9nit-1) d2(t=1)



Going deeper

» And there’s shortcuts for them too:

a0 \" 50
b1 | p)
T
<3aj(t) ) — 5O . (p=nyT
H
0)

T
(aa‘(]t(t)l)) = [h(t‘l) o (1—ht=Dy| o HTs® = 501
=



Outline

Backprop on a DAG



Motivation

» Gated units with “reset” and “output” gates
» Reduce problems with vanishing gradients

« — N

ouTt

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et
al. 2014)



Intuition

Gates z; and r; for each hidden layer neuron
zi, i € [0, 1]

h as “candidate” hidden layer

h, z, r all depend on on z(®), Rt=1)

h(®) depends on A1) mixed with A(*)

v

v

v

v

v

« — N

ouTt

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et
al. 2014)



Equations
> 20 =g (W,2® + U,RD)
> ) =g (W,2® + U,AEY)
» 1) = tanh (Wa:(t) +r® o Uh(tfl))
» A0 = 20 o pt=1) 4 (1 — 2(0) 0 B
» Optionally can have biases; omitted for clarity.

« —IN

ouTt

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et
al. 2014)

Same eqs. as Lecture 8, subscripts/superscripts as in Assignment #2.



Backpropagation

Multi-path to compute 527

T
> Startwith 50 = (27)° e R

» B0 = 20 o -1 4 (1 — z(0) o )
» Expand chain rule into sum (a.k.a. product rule):

- ° 9z T 9z °

-1
01 _ 0 | @ on"Y 020
ox(t) Oh®)

_l’_

aJ py O 91 —20) .,
R0 [(1 2 st T amm ol



It gets (a little) better

Multi-path to compute 527

» Drop terms that don’t depend on z(*):

01 _ 0 | @ ont"Y 020
920~ on® 220 920
aJ on® 91 —z®) -
9 gL (t)
RPTAO) [(1 Jege® T "z °"
oJ [o: o)
_ _ (t-1) Ly 9
0 [m(t)oh +(1-z )Oax@)

8J 82’ (t) il(t)

R0 9z® °




Almost there!
Multi-path to compute 527
» Now we really just need to compute two things:
» Output gate:

9z
Ox(t)

=001 -z 0w,



Almost there!
Multi-path to compute 527
» Now we really just need to compute two things:
» Output gate:

9z
Ox(t)

=001 -z 0w,

» Candidate h:

Oh®) -
e = (=G ew



Almost there!

Multi-path to compute

>

v

v

v

v

aJ
ox(t)

Now we really just need to compute two things:
Output gate:

9z
Ox(t)

=001 -z 0w,

Candidate h:

Oh®) -
e = (=G ew

Ok, I lied - there’s a third.
Don’t forget to check all paths!



Almost there!

- o
Multi-path to compute 527
» Last one: ®
3% =rWo(1-rM)ow,
X

» Now we can just add things up!
» (I'll spare you the pain...)



Whew.

» Why three derivatives?
» Three arrows from z® to distinct nodes

» Four paths total (giig appears twice)

Final memory

Memory (reset)

Update gate

Reset gate

Input:



Whew.

» GRUs are complicated
» All the pieces are simple
» Same matrix gradients that you’ve seen before

Final memory

Memory (reset)

Update gate

Reset gate

Input:



Summary

» Check your dimensions!
» Write error vectors 4; just parentheses around chain rule

» Combine simple operations to make complex network

» Matrix-vector product
» Activation functions (tanh, sigmoid, softmax)



