CS224D: Deep Learning for Natural Language Processing Andrew Maas Spring 2016 **Neural Networks in Speech Recognition** #### Outline - Speech recognition systems overview - HMM-DNN (Hybrid) acoustic modeling - What's different about modern HMM-DNNs? - HMM-free RNN recognition #### Conversational Speech Data **Switchboard** 4,870 speakers but it was really nice to get back with a telephone and the city and everything and you know yeah well (i-) the only way i could bear it was to (pass) (some) to be asleep i was like well it is not gonna (be-) get over until you know (w-) (w-) yeah it (re-) really i (th-) i think that is what ruined it for us #### Outline - Speech recognition systems overview - HMM-DNN (Hybrid) acoustic modeling - What's different about modern HMM-DNNs? - HMM-free RNN recognition # Acoustic Modeling with GMMs **Transcription:** Samson **Pronunciation:** S - AE - M - S - AH - N **Sub-phones:** $942 - 6 - 37 - 8006 - 4422 \dots$ Hidden Markov Model (HMM): 942 942 6 **Acoustic Model:** **Audio Input:** GMM models: P(x|s) x: input features s: HMM state #### **DNN Hybrid Acoustic Models** **Transcription:** Samson **Pronunciation:** S - AE - M - S - AH - N **Sub-phones:** $942 - 6 - 37 - 8006 - 4422 \dots$ Hidden Markov Model (HMM): Use a DNN to approximate: P(s|x) **Acoustic Model:** Apply Bayes' Rule: P(x|s) = P(s|x) * P(x) / P(s) DNN * Constant / State prior **Audio Input:** # Not Really a New Idea #### RECOGNITION Renals, Morgan, Bourland, Cohen, & Franco. 1994. #### Modern Systems use **D**NNs and Senones COMPARISON OF CONTEXT-INDEPENDENT MONOPHONE STATE LABELS AND CONTEXT-DEPENDENT TRIPHONE SENONE LABELS | # Hidden | # Hidden | Label | Dev | |----------|----------|------------------|----------| | Layers | Units | Туре | Accuracy | | 1 | 2K | Monophone States | 59.3% | | 1 | 2K | Triphone Senones | 68.1% | | 3 | 2K | Monophone States | 64.2% | | 3 | 2K | Triphone Senones | 69.6% | | Criterion | Dev Accuracy | Test Accuracy | |-----------|--------------|---------------| | ML | 62.9% | 60.4% | | MMI | 65.1% | 62.8% | | MPE | 65.5% | 63.8% | #### Hybrid Systems now Dominate ASR ### [TABLE 3] A COMPARISON OF THE PERCENTAGE WERS USING DNN-HMMs AND GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS. | TASK | HOURS OF TRAINING DATA | DNN-HMM | GMM-HMM
WITH SAME DATA | GMM-HMM
WITH MORE DATA | |--|------------------------|---------|---------------------------|---------------------------| | SWITCHBOARD (TEST SET 1) | 309 | 18.5 | 27.4 | 18.6 (2,000 H) | | SWITCHBOARD (TEST SET 2) | 309 | 16.1 | 23.6 | 17.1 (2,000 H) | | ENGLISH BROADCAST NEWS | 50 | 17.5 | 18.8 | | | BING VOICE SEARCH (SENTENCE ERROR RATES) | 24 | 30.4 | 36.2 | | | GOOGLE VOICE INPUT | 5,870 | 12.3 | | 16.0 (>> 5,870 H) | | YOUTUBE | 1,400 | 47.6 | 52.3 | | #### What's Different in Modern DNNs? - Fast computers = run many experiments - Deeper nets improve on shallow nets - Architecture choices (easiest is replacing sigmoid) - Pre-training matters very little. Initially we thought this was the new trick that made things work - Many more parameters # Depth Matters (Somewhat) Table 1: Effect of CD-DNN-HMM network depth on WER (%) on Hub5'00-SWB using the 309-hour Switchboard training set. DBN pretraining is applied. | $L \times N$ | WER | $1 \times N$ | WER | |----------------|------|-----------------|------| | $1 \times 2k$ | 24.2 | _ | _ | | $2 \times 2k$ | 20.4 | _ | _ | | $3 \times 2k$ | 18.4 | _ | - | | $4 \times 2k$ | 17.8 | _ | _ | | 5×2 k | 17.2 | 1×3772 | 22.5 | | $7 \times 2k$ | 17.1 | 1×4634 | 22.6 | | $9 \times 2k$ | 17.0 | _ | _ | | 5×3 k | 17.0 | _ | _ | | - | _ | 1×16 k | 22.1 | **Warning!** Depth can also act as a regularizer because it makes optimization more difficult. This is why you will sometimes see very deep networks perform well on TIMIT or other small tasks. # Replacing Sigmoid Hidden Units #### **Comparing Nonlinearities** # Scaling up NN acoustic models in 1999 ### Adding More Parameters 15 Years Ago Size matters: An empirical study of neural network training for LVCSR. Ellis & Morgan. ICASSP. 1999. Hybrid NN. 1 hidden layer. 54 HMM states. 74hr broadcast news task "...improvements are almost always obtained by increasing either or both of the amount of training data or the number of network parameters ... We are now planning to train an 8000 hidden unit net on 150 hours of data ... this training will require over three weeks of computation." #### Adding More Parameters Now Comparing total number of parameters (in millions) of previous work versus our new experiments #### **Combining Speech Corpora** ### **Scaling Total Parameters** #### Scaling Total Parameters #### Outline - Speech recognition systems overview - HMM-DNN (Hybrid) acoustic modeling - What's different about modern HMM-DNNs? - HMM-free RNN recognition #### **HMM-DNN Speech Recognition** **Transcription:** Samson **Pronunciation:** S - AE - M - S - AH - N **Sub-phones:** $942 - 6 - 37 - 8006 - 4422 \dots$ Hidden Markov Model (HMM): Use a DNN to approximate: P(s|x) **Acoustic Model:** Apply Bayes' Rule: P(x|s) = P(s|x) * P(x) / P(s) DNN * Constant / State prior **Audio Input:** #### **HMM-Free Recognition** (Graves & Jaitly. 2014) #### HMM-Free Recognition **Transcription:** Samson **Characters: SAMSON** **Collapsing** SS___AA_M_S___O___ NNNN function: S **Acoustic Model:** Use a DNN to approximate: P(a|x) The distribution over characters **Audio Input:** Andrew Maas, Stanford CS224D, 2016 (Graves & Jaitly. 2014) #### **CTC Objective Function** Labels at each time index are conditionally independent (like HMMs) $$\Pr(\mathbf{a}|x) = \prod_{t=1}^{T} \Pr(a_t, t|x)$$ Sum over all time-level labelings consistent with the output label. $\Pr(y|x) = \sum_{i=1}^{n} \Pr(a|x)$ Output label: AB Time-level labelings: AB, _AB, A_B, ... _A_B_ Final objective maximizes probability of true labels: $$CTC(x) = -\log \Pr(y^*|x)$$ # Collapsing Example #### Per-frame argmax: #### After collapsing: yet a rehbilitation cru is onhand in the building loogging bricks plaster and blueprins four forty two new betin epartments #### Reference: yet a rehabilitation crew is on hand in the building lugging bricks plaster and blueprints for forty two new bedroom apartments #### Recurrence Matters! | Architecture | CER | |--------------|-----| | DNN | 22 | # Decoding with a Language Model **Lexicon** [a, ..., zebra] **Language** p("yeah" | "oh") Model (Hannun, Maas, Jurafsky, & Ng. 2014) ### Rethinking Decoding (Maas*, Xie*, Jurafsky, & Ng. 2015) #### Lexicon-Free & HMM-Free on Switchboard (Maas*, Xie*, Jurafsky, & Ng. 2015) #### Transcribing Out of Vocabulary Words Truth: yeah i went into the i do not know what you think of *fidelity* but HMM-GMM: yeah when the i don't know what you think of **fidel it even them** CTC-CLM: yeah i went to i don't know what you think of **fidelity but um** Truth: no no speaking of weather do you carry a altimeter slash *barometer*HMM-GMM: no i'm not all being the weather do you uh carry a **uh helped emitters last brahms**her CTC-CLM: no no beating of whether do you uh carry a uh a time or less barometer Truth: i would ima- well yeah it is i know you are able to stay home with them HMM-GMM: i would amount well yeah it is i know um you're able to stay home with them CTC-CLM: i would ima- well yeah it is i know uh you're able to stay home with them # **Comparing Alignments** HMM-GMM phone probabilities CTC character probabilities # Learning Phonemes and Timing # **Learning Phonemes and Timing** # Pushing Performance with HMM-Free ### CTC now powers Google search ASR - Context-dependent states rather than characters - Uni-directional LSTM for faster streaming - CTC + sequence discriminative loss http://googleresearch.blogspot.com/2015/09/google-voice-search-faster-and-more.html (Sak, Senior, Rao, & Beaufays. 2015) #### Deep Speech 2: Scaling up CTC - Efficient GPU training - Some recurrent architecture variants - Data augmentation - Works on both English and Mandarin | Fraction of Data | Hours | Regular Dev | Noisy Dev | |------------------|-------|-------------|-----------| | 1% | 120 | 29.23 | 50.97 | | 10% | 1200 | 13.80 | 22.99 | | 20% | 2400 | 11.65 | 20.41 | | 50% | 6000 | 9.51 | 15.90 | | 100% | 12000 | 8.46 | 13.59 | Table 10: Comparison of English WER for Regular and Noisy development sets on increasing training dataset size. The architecture is a 9-layer model with 2 layers of 2D-invariant convolution and 7 recurrent layers with 68M parameters. (Amodei et al. 2015) Andrew Maas, Stanford CS224D, 2016 Batch # Listen, attend, and spell Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence \mathbf{x} into high level features \mathbf{h} , the speller is an attention-based decoder generating the \mathbf{y} characters from \mathbf{h} . #### Listen, attend, and spell Figure 2: Alignments between character outputs and audio signal produced by the Listen, Attend and Spell (LAS) model for the utterance "how much would a woodchuck chuck". The content based attention mechanism was able to identify the start position in the audio sequence for the first character correctly. The alignment produced is generally monotonic without a need for any location based priors. #### Conclusion - HMM-DNN systems are now the default, state-ofthe-art for speech recognition - We roughly understand why HMM-DNNs work but older, shallow hybrid models didn't work as well - HMM-Free approaches are rapidly improving and making their way to production systems - It's a very exciting time for speech recognition #### End - More on spoken language understanding: - cs224s.stanford.edu - Open source speech recognition toolkit (Kaldi): - Kaldi.sf.net - Multiple open source implementations of CTC available