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Conversational Speech Data

Switchboard

but it was really nice to get back with a telephone and the city and everything and you
know yeah

well (i-) the only way i could bear it was to (pass) (some) to be asleep i was like well it is
not gonna (be-) get over until you know (w-) (w-) yeah it (re-) really i (th-) i think that is

what ruined it for us

Andrew Maas. Stanford CS224D. 2016
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Acoustic Modeling with GMMs

Transcription: Samson
Pronunciation: S—-AE-M-S-AH-N
Sub-phones : 942 —6—-37—8006 —4422 ...

Hidden Markov @ @ °
Model (HMM):

Acoustic Model:

GMM models:
P(x[s)

X: input features
s: HMM state

Audio Input: [ Features ][ Features ][ Features ]

Andrew Maas. Stanford CS224D. 2016



DNN Hybrid Acoustic Models

Transcription: Samson
Pronunciation: S—-AE-M-S-AH-N
Sub-phones : 942 —6—-37—8006 —4422 ...

Hidden Markov
Model (HMM):

Use a DNN to approximate:
P(s|x)

Acoustic Model:

Apply Bayes’ Rule:

[Jﬁ [_H [J‘ﬁ P(x|s) = P(s|x) * P(x) / P(s)
DNN * Constant / State prior
Features (x,) Features (x,) Features (x;)

Audio Input:

Andrew Maas. Stanford CS224D. 2016



Not Really a New Idea

TRAINING Targets
S h Estimated
peec Front End Features MLP Phone Labels
RECOGNITION
Estimated
MLP
Speech Fron End Features Phone
Probabilities
Viterbi
Alignment (HMM)
Word
Sequence

Renals, Morgan, Bourland, Cohen, & Franco. 1994. Andrew Maas. Stanford CS224D. 2016



Modern Systems use DNNs and Senones

COMPARISON OF CONTEXT-INDEPENDENT MONOPHONE STATE LABELS
AND CONTEXT-DEPENDENT TRIPHONE SENONE LLABELS

# Hidden | # Hidden Label Dev
Layers Units Type Accuracy
1 2K Monophone States 59.3%
1 2K Triphone Senones 68.1%
3 2K Monophone States 64.2%
3 2K Triphone Senones 69.6%
Criterion | Dev Accuracy | Test Accuracy

ML 62.9% 60.4%

MMI 65.1% 62.8%

MPE 65.5% 63.8%

Dahl, Yu, Deng & Acero. 2011. Andrew Maas. Stanford CS224D. 2016



Hybrid Systems now Dominate ASR

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND

GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)
ENGLISH BROADCAST NEWS 50 17.5 18.8
BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2
GOOGLE VOICE INPUT 5,870 12.3 16.0 (>> 5,870 H)
YOUTUBE 1,400 47.6 52.3

Hinton et al. 2012. Andrew Maas. Stanford CS224D. 2016



What’s Different in Modern DNNs?

Fast computers = run many experiments

Deeper nets improve on shallow nets
Architecture choices (easiest is replacing sigmoid)

Pre-training matters very little. Initially we thought
this was the new trick that made things work

Many more parameters

Andrew Maas. Stanford CS224D. 2016



Depth Matters (Somewhat)

Table 1: Effect of CD-DNN-HMM network depth on WER (%) on Hub5 00-SWB using the 309-
hour Switchboard training set. DBN pretraining is applied.

LxN WER 1xN  WER

1 x2k 242 - -
2x2k 204 - -
3x2k 184 - -
4x2k 17.8 - —
5x2k  17.2 | 1 x3772 225
Tx2k 17.1 | 1 x4634 226
9x2k 17.0 - -
5x3k 17.0 - ~

- - 1 x 16k  22.1

Warning! Depth can also act as a regularizer because it makes optimization
more difficult. This is why you will sometimes see very deep networks perform
well on TIMIT or other small tasks.

Yu, Seltzer, Li, Huang, Seide. 2013. Andrew Maas. Stanford CS224D. 2016



Replacing Sigmoid Hidden Units

2

—TanH 1

—RelL

0
4 /o 4
1

(Glorot & Bengio. 2011) Andrew Maas. Stanford CS224D. 2016



Comparing Nonlinearities

_— Switchboard WER
® TanH
W Rel
20 -
15 -
10 -
5 —
0 - l | |
GMM 2 Layer 3 Lyaer 4 Layer MSR 9 Layer IBM 7 Layer
MMI

(Maas, Qi, Xie, Hannun, Lengerich, Jurafsky, & Ng. In Submission) Andrew Maas. Stanford CS224D. 2016



Scaling up NN acoustic models in 1999

WER for PLP12N nets vs. net size & training data

~_ 500

18.5 _ - " 1000
Training set / hoursk'i//(2000 Hidden layer / units
74 4000

0.7M total NN parameters
(Ellis & Morgan. 1999) ML CVY I VIUUOD. JLUITITITVIEA \.«JLL_I'I)- 2016



Adding More Parameters 15 Years Ago

Size matters: An empirical study of neural network
training for LVCSR. Ellis & Morgan. ICASSP. 1999.

Hybrid NN. 1 hidden layer. 54 HMM states.
74hr broadcast news task

“...improvements are almost always obtained by increasing either or
both of the amount of training data or the number of network
parameters ... We are now planning to train an 8000 hidden unit net on
150 hours of data ... this training will require over three weeks of
computation.”

Andrew Maas. Stanford CS224D. 2016



Adding More Parameters Now

 Comparing total number of parameters (in millions)
of previous work versus our new experiments

Total DNN parameters (M)
0 50 100 150 200 250 300 350 400 450

(Maas, Qj, Xie, Hannun, Lengerich, Jurafsky, & Ng. In Submission) Andrew Maas. Stanford CS224D. 2016



Combining Speech Corpora

Switchboard Fisher

Combined corpus baseline system now available in Kaldi

(Maas, Qi, Xie, Hannun, Lengerich, Jurafsky, & Ng. In Submission) Andrew Maas. Stanford CS224D. 2016



Scaling Total Parameters

35 -

Frame Error Rate

30

25 -

20 I -
GMM 36M 100M 200M 400M

Model Size
(Maas, Qi, Xie, Hannun, Lengerich, Jurafsky, & Ng. In Submission) Andrew Maas. Stanford CS224D. 2016



Scaling Total Parameters
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(Maas, Qi, Xie, Hannun, Lengerich, Jurafsky, & Ng. In Submission) Andrew Maas. Stanford CS224D. 2016
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HMM-DNN Speech Recognition

Transcription: Samson
Pronunciation: S—-AE-M-S-AH-N
Sub-phones : 942 —6—-37—8006 —4422 ...

Hidden Markov
Model (HMM):

Use a DNN to approximate:
P(s|x)

Acoustic Model:

Apply Bayes’ Rule:

[Jﬁ [_H [J‘ﬁ P(x|s) = P(s|x) * P(x) / P(s)
DNN * Constant / State prior
Features (x,) Features (x,) Features (x;)

Audio Input:

Andrew Maas. Stanford CS224D. 2016



HMM-Free Recognition

Transcription: Samson
Pronunciation:
Sub-phones :

Hidden Markov
Model (HMM):

Acoustic Model:

| — —

Audio Input:

I Features (x,) I l Features (x,) I I Features (x;) I

(Graves & Jaitly. 2014) Andrew Maas. Stanford CS224D. 2016



HMM-Free Recognition

Transcription: Samson
Characters: SAMSON
Collapsing SS. AA M S O NNNN
function:
S S _
P(a]x,) P(a|x,) P(a|x,) Use a DNN to approximate:

P(a|x)
Acoustic Model:

The distribution over

[% characters

— —
(o)

Audio Input:

(Graves & Jaitly. 2014) Andrew Maas. Stanford CS224D. 2016



CTC Objective Function

Labels at each time index are conditionally
independent (like HMMs)

r
Pr(;1|-,l', ) = H Pl‘(ﬁ(lt. f|;l,':)

t=1

Sum over all time-level labelings consistent with the

OUtpUt |ab6|. Pl(l/ ‘l,.) — Z pl‘((l~|'.l'vj)

Output label: AB acB-1(y)

Time-level labelings: AB, AB,A B,.. A B_

Final objective maximizes probability of true labels:
CTC(x) = — l()g Pl‘(:yx|;l'» )

(Graves & Jaitly. 2014) Andrew Maas. Stanford CS224D. 2016



Per-frame argmax:

Collapsing Example

y
y_ee t a
rr__e hh b i i tt aa tt iio_n_
cc rer_u i ss
o nn hhh_a nnddd i n
__thh_e bb_uuii lidd i nng
| o  og g i nng
b rrii p__Il_a sstt eerr__
a_nnd_ b llluu_ ee pp__r i nnss_
oou rer f oo _rrr_tty
t  www_oo nn ew
b e t [ n
e pp rr__tt mm_ee___nnntss

After collapsing:

yet a rehbilitation cru is onhand in the building loogging bricks plaster and blueprins four forty two new betin epartments

Reference:

yet a rehabilitation crew is on hand in the building lugging bricks plaster and blueprints for forty two new bedroom

apartments

(Hannun, Maas, Jurafsky, & Ng. 2014)

Andrew Maas. Stanford CS224D. 2016



Recurrence Matters!

S _

S
o) (Crepn ) (rep ) e
' DNN 22

l Features (x,) I l Features (x,) I Features (x;)

- g e -2k
- o e &
[

T e e
- . e 1]

(Hannun, Maas, Jurafsky, & Ng. 2014) Andrew Maas. Stanford CS224D. 2016



Decoding with a Language Model

Lexicon [a, ..., zebra]
Language p(“yeah” | “oh”)
Model

Character 0o h e a3 h
Probabilities —00_N__Y € da_

A A A
A A

(Hannun, Maas, Jurafsky, & Ng. 2014)

12

40
30
20
10

Character Error Rate

None Lexicon Bigram

Word Error Rate

None Lexicon Bigram

Andrew Maas. Stanford CS224D. 2016



Rethinking Decoding

Out of Vocabulary Words
syriza bae
abo--
zebra] sof--

schmidhuber

“oh”) Character p(h | o,h,,y,e,a,)
Language
Model

Character oo h e aa h Character
Probabilities —00.N_Yy €. ad_ Probabilities

A A A A A A
A A

_o0.h yeaah

1

!

i Pi(luui“ Plf|lllrl

(Maas*, Xie*, Jurafsky, & Ng. 2015) Andrew Maas. Stanford CS224D. 2016



Lexicon-Free & HMM-Free on Switchboard

40

35

30

25

20
15 -
0O | | | |

HMM-GMM CTC No LM CTC+ 7-gram CTC+ NN LM HMM-DNN

(9
|

(Maas*, Xie*, Jurafsky, & Ng. 2015) Andrew Maas. Stanford CS224D. 2016



Transcribing Out of Vocabulary Words

Truth: yeah i went into the i do not know what you think of fidelity but
HMM-GMM: yeah when the i don’t know what you think of fidel it even them
CTC-CLM: yeah i went to i don’t know what you think of fidelity but um

Truth: no no speaking of weather do you carry a altimeter slash barometer

HMM-GMM: no i’'m not all being the weather do you uh carry a uh helped emitters last brahms
her

CTC-CLM: no no beating of whether do you uh carry a uh a time or less barometer

Truth: i would ima- well yeah it is i know you are able to stay home with them
HMM-GMM: i would amount well yeah it is i know um you’re able to stay home with them
CTC-CLM: i would ima- well yeah it is i know uh you’re able to stay home with them

(Maas*, Xie*, Jurafsky, & Ng. 2015) Andrew Maas. Stanford CS224D. 2016



Comparing Alignments

I((|'t)
S

—-= p(zt)

—  p(=-fz)

—

ST _____ o__bh__________ ____
: | ' k(s): oh yeah
sl ehl ¥ wnl_J ] iy
del
seventy|
HMM-GMM phone probabilities CTC character probabilities

(HMM slide from Dan Ellis) Andrew Maas. Stanford CS224D. 2016



Learning Phonemes and Timing

0.25 -

0.20 - -
S e
0.15
—- Kk
0.10
0.05
- — I = L 1 1
5 10 15 20 25

(Maas*, Xie*, Jurafsky, & Ng. 2015) Andrew Maas. Stanford CS224D. 2016



Learning Phonemes and Timing

k
0.20 | ; — ¢
E — e
E -—- k
- T I - 1 1 ]
10 15 20 25
0.25 .
woo
0.20 i b
0.15 | :
0.10 |
0.05 |
e ]
_5 20 25

(Maas™*, Xie*, Jurafsky, & Ng. 2015)
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Andrew Maas. Stanford CS224D

. 2016



Pushing Performance with HMM-Free

Andrew Maas. Stanford CS224D. 2016



CTC now powers Google search ASR

* Context-dependent states rather than characters
* Uni-directional LSTM for faster streaming
 CTC + sequence discriminative loss

<b> ---- j.35 — 113 — z.87 — S.41 — A22 —
sil.1 u.46 @.320 — .17 ©@.133 g.18 —
m.25 — z.69 m.227 — n.350 — k.75 oU.68 —

A . .
. . ’ .
. . * N
N .
.
'

S N I I O

;-“-‘ 1} ‘.'J;‘
!

Sil mjuz i @mzln S @k A

Sil

http://googleresearch.blogspot.com/2015/09/google-voice-search-faster-and-more.html

(Sak, Senior, Rao, & Beaufays. 2015) Andrew Maas. Stanford CS224D. 2016




Deep Speech 2: Scaling up CTC

e Efficient GPU training
e Some recurrent architecture variants
* Data augmentation

* Works on both English and Mandarin (

CTC )

Fully

i (O 000000 OJI Connected

XXXXxmon
e
@0 ©@ 0@ 0009 Recurent

@eeee0e00)| mu

Fraction of Data Hours Regular Dev  Noisy Dev

1% 120 29.23 50.97 T
10% 1200 13.80 22.99 Gl | (@eeeeee e et
20% 2400  11.65 20.41 ormatization
50% 6000 951 15.90 @eoco0eo09
100% 12000 8.46 13.59 (. o00Q®OO .J |
Table 10: Comparison of English WER for Regular and Noisy development sets on increasing training dataset (O Q00000 OJ f
size. The architecture is a 9-layer model with 2 layers of 2D-invariant convolution and 7 recurrent layers with 1D or 2D
68M parameters. (O 000000 OJ Invariant

Convolution

(00000000

A

( Spectrogram ]

(Amodei etal. 2015) Andrew Maas. Stanford CS224D. 2016




Listen, attend, and spell

Speller
% s Ya (eos) Grapheme characters y; are
modelled by the
CharacterDistribution

AttentionContext creates
context vector ¢; from h
and S;

Long input sequence x is encoded with the pyramidal
h= (h,....hy) BLSTM Listen into shorter sequence h

Listener

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.

(Chan, Jaitly, Le, & Vinyals. 2015) Andrew Maas. Stanford CS224D. 2016



Listen, attend, and spell

Alignment between the Characters and Audio

Audio

<space

<space

Hypothesis

<space

</S

Time

Figure 2: Alignments between character outputs and audio signal produced by the Listen, Attend and Spell
(LAS) model for the utterance “how much would a woodchuck chuck”. The content based attention mechanism
was able to identify the start position in the audio sequence for the first character correctly. The alignment

produced is generally monotonic without a need for any location based priors.

(Chan, Jaitly, Le, & Vinyals. 2015) Andrew Maas. Stanford CS224D. 2016



Conclusion

HMM-DNN systems are now the default, state-of-
the-art for speech recognition

We roughly understand why HMM-DNNs work but
older, shallow hybrid models didn’t work as well

HMM-Free approaches are rapidly improving and
making their way to production systems

It’s a very exciting time for speech recognition

Andrew Maas. Stanford CS224D. 2016



End

* More on spoken language understanding:
— cs224s.stanford.edu

* Open source speech recognition toolkit (Kaldi):
— Kaldi.sf.net

* Multiple open source implementations of CTC
available

Andrew Maas. Stanford CS224D. 2016



