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Overview Today:

e QOrganizational Stuff

Project Tips

e From one-layer to multi layer neural network!

e Max-Margin loss and backprop!
(This is the hardest lecture of the quarter)
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Announcement:

e 1% extra credit for Piazza participation!

e Hint for PSetl: Understand math and dimensionality, then add
print statements, e.g.

def softmaxCostAndGradient(predicted, target, outputVectors, dataset):
" Softmax cost function for word2vec models """

=)

28
29
30

"v_hat", predicted.shape
"expected", target
"U", outputVectors.shape

False

e Studentsurvey sent out last night, please give us feedback to
improve the class :)
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Class Project

e Mostimportant (40%) and lasting result of the class

PSet 3 a little easier to have more time

e Start early and clearly define your task and dataset

2.
3.
4

Project types:
1.

Apply existing neural network model to a new task

Implement a complex neural architecture
Come up with a new neural network model

Theory
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Class Project: Apply Existing NNets to Tasks

1. Define Task:
* Example: Summarization

2. Define Dataset
1. Search for academic datasets

e Theyalreadyhave baselines
e E.g.: Document Understanding Conference (DUC)

2. Define your own (harder, need more new baselines)

e |fyou'rea graduatestudent:connect to your research
e Summarization, Wikipedia: Intro paragraph and rest of large article
e Becreative: Twitter, Blogs, News
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Class Project: Apply Existing NNets to Tasks

3. Define your metric
e Search onlinefor well established metrics on this task

Summarization: Rouge (Recall-Oriented Understudy for
Gisting Evaluation) which defines n-gram overlap to human
summaries

4. Splityour dataset!
* Train/Dev/Test
e Academic dataset often come pre-split
* Don’tlook at the test split until ~¥1 week before deadline!
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Class Project: Apply Existing NNets to Tasks

5. Establish a baseline

* Implementthe simplest model (often logistic regression on
unigrams and bigrams) first

e Compute metrics on train AND dev
* Analyze errors

* If metrics are amazing and no errors:
done, problem was too easy, restart :)

6. Implement existing neural net model
e Compute metric ontrain and dev
* Analyze output and errors
*  Minimum bar for this class
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Class Project: Apply Existing NNets to Tasks

7. Always be close to your datal
* Visualize the dataset
* Collect summary statistics
* Look at errors

* Analyze how different hyperparameters affect performance

8. Try out different model variants

* Soonyou will have more options
e  Word vector averaging model (neural bag of words)
e Fixed window neural model
e Recurrent neural network
e Recursive neural network

° Convolutional neural network
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Class Project: A New Model -- Advanced Option

Do all other steps first (Start early!)
e Gain intuition of why existing models are flawed

e Talk to other researchers, come to my office hours a lot

e |Implement new modelsand iterate quickly over ideas

e Set up efficient experimental framework

e Build simpler new models first

e Example Summarization:
* Average word vectors per paragraph, then greedy search
* Implement language model or autoencoder (introduced later)
» Stretch goal for potential paper: Generate summary!
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Project Ideas

e Summarization
 NER, like PSet 2 but with larger data

Natural Language Processing (almost) from Scratch, Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, Pavel Kuksa,

e Simple question answering,

, Mohit lyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher and Hal Daumé IlI (EMNLP
2014)

* |mage to text mapping or generation,

, Richard Socher, Andre;j
Karpathy, Quoc V. Le, Christopher D. Manning, Andrew Y. Ng. (TACL 2014)
or

Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy, Li Fei-Fei

e Entity level sentiment

e Use DL to solve an NLP challenge on kaggle,

Develop a scoring algorithm for student-written short-answer responses,
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Default project: sentiment classification

e Sentimenton movie reviews: hittp://nlp.stanford.edu/sentiment/

* Lots of deep learningbaselines and methods have been tried

®
@ |
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® ® their shortage dilutes ®
® © ® PEO ® ® 6O ®
A ® at ® ® are few and © 6 the potency of ®
thunderous ride @ . far between @ . action
first ® of ® O otherwise respectable
, pure finesse

quiet cadences



A more powerful window classifier

e Revisiting

Xwindow =[ Xmuseums Xin Xparis Xare Xamazing]

e Assume we want to classify whether the center word is a
location or not
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A Single Layer Neural Network

* Asingle layer is a combination of a linear layer
and a nonlinearity: z = Wx+b

a = f(2)
* The neural activations a can then
be used to compute some function

e Forinstance, an unnormalized score or a
softmax probability we care about:

score(zr) = U'a€eR
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Summary: Feed-forward Computation

Computing a window’s score with a 3-layer neural
net: s = score(museums in Paris are amazing )

g — UTf(WZB+b) = R2OX1,W c RSXQO,U c RSXl

s = Ula
a = f(Z) QQQCTCCQQ
z = Wx—+b

Xwindow =[ Xmuseums  Xin Xparis Xare Xamazing]
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Main intuition for extra layer

The layer learns non-linear
interactions between the

input word vectors. T
0000 0000
Example: 0000 0000 0000 0000 0000

only if “museums” iS  Xuigow =[ Xmueuns Xin  Xearis  Xare  Xomazing]
first vector should

it matter that “in” is

in the second position
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Summary: Feed-forward Computation

e s =score(museumsin Paris are amazing)
e s.=score(Notall museums in Paris)
e |dea for training objective: make score of true window

larger and corrupt window’s score lower (until they’re
good enough): minimize

J =max(0,1 — s+ s.)

e This is continuous, can perform SGD
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Max-margin Objective function

e Objective for a single window:

J = max(0,1 — s+ s,)

e Each window with a location at its center should have
a score +1 higher than any window without a location
at its center

o xxx |€ 1 2| ooo

e For full objective function: Sum over all training
windows
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Training with Backpropagation

s=U"f(Wax + b)

J = max(0,1 — s+ s.) se =U' f(Wx,. + b)

Assuming costJis >0,

compute the derivatives of s and s_ wrt all the
involved variables: U, W, b, x

0s 0 0s
au —au- ¢ au @
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Training with Backpropagation
* Let’s consider the derivative of a single weight W

os 0 . & . o .
= —_ — b
o —awl =gl T@) =GV f(Weth)

e This only appears inside a;

* For example: W,5 is only
used to compute a,
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Training with Backpropagation

0s 0 . o

— = ——UTa=——U"f(z) = U f(Wz +b
ivati : oy Oy Ju
Derivative of weight W.: o _ 977
5 J ox ou Ox
0 T o z = Wiz+b :;Wijxﬁbi
aWijU “@ = 8WijUia"' . |
0 da; 0%z;
Ui@Wij a = U O0z; OW,;
_ Qf(zi) 0z
= Y s oW
= U, f'(2) 0z
T oW
= U () D
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Training with Backpropagation

M-

Derivative of single weight W : = - wiavn -

9, OW,.x + b; a; = f(z)

U——a; = Uf'(z
oW, I =) =50

Wija:j + b;

S
I
-

0
= Uif,<zi>aW” ZWzkwk
1] L

= sz’(zz) €L j
N——

= 57, ZCj

T

Local error Local input
signal signal

where f'(2) = f(2)(1 — f(2)) for logistic f
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Training with Backpropagation

* From single weight W to full W:

3
8 S / zi = W,x+b = Z Wijﬂ?j + b;
W, — sz (ZZ) Lj j=1
‘ a; = f(Zz)
= 5% Qﬁj

e We want all combinations of

i=1,2andj=1,2,3>"7

t: ﬂ _
ow

e Solution: Outer produc
where § ¢ gp2x1is the
“responsibility” or error message
coming from each activation a

oxt W,
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Training with Backpropagation

* For biases b, we get: e = Wisht =S Wie +b
ai = f(z) _
B
Uza—bzaz
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Training with Backpropagation

That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for
higher layers in computing derivatives for lower layers!

Example: last derivatives of model, the word vectors in x

24



Training with Backpropagation

25

Take derivative of score with ~ ds
respect to single elementof  Jz;

word vector

Now, we cannot just take
into consideration one g,
because each x; is connected
to all the neurons above and
hence x; influences the
overall score through all of
these, hence:

B i ds 0Oa;
B Oa; 0z
1=1

Z aUTCL (90,1
Oa; Ox;

=1

B ZUﬁ’f(W x+b)

1=1

= ZUf W:c+b)

= Z(SiWij
1=1

—Wwls

8:1:3

Re-used part of previous derivative



Training with Backpropagation

o With 5_8 — W.?Cs,what is the full gradient? >
L j
0s T
b S
ox W

e QObservations: The error message =+ that arrives at a hidden
layer has the same dimensionality as that hidden layer
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Putting all gradients together:

e Remember: Full objective function for each window was:

s=U"f(Wax + b)

J =max(0,1 — s+ s.) s, = UT f(Wao 4+ b)

e For example: gradient for U:

O 11— st 5e > 0} (~f(War+ )+ f(Wa, +1)

0s

— =111 - C — c
i {1—s4+5s.>0}(—a+ac)
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Two layer neural nets and full backprop

e Let'slookat a 2 layer neural network

e Same window definition for x

e Same scoring function

e 2 hiddenlayers (carefully not superscripts now!)

= L), ° s
22— w4 p J
@) ) 0000 0000 al3)
a = f (z )
W2
23 = w®g@ 4 p3) 000 000000 4(2)
o = f (Z(3)) Wi
s = UTa® 0000 0000 0000 0000 0000 | X
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Two layer neural nets and full backprop

e Fully written out as one function:

s = Ul'f (W(Q)f (W(Uaj 4+ b(l)) 4+ b(2)) coo0 oooe 403)
— UTy (W@)a(z) + b<2>)

UTa®)

W2
0000 000000

W)

e Same derivation as before for W2 (now sitting on a(1))

6Wij
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Two layer neural nets and full backprop

ivati - 0,0
e Same derivation as before for top W) : v = a
2(2) = W(]‘)x _|_ b(l)
05 _ 11 (L®) g & _ (.
S = E]Zf (Zz )Jaj a = f (Z )
w ® o 23 = WPl 4 p
B 2 4 (3) (3)
ﬂ = ()
05 _ 53,07 s = UTa®

e |n matrix notation:
oW (2)

where 6@ =pyo f/ (z(3>) and =+ is the element-wise product
also called Hadamard product

0s
Ww (1)

e Last missing piece for understanding general backprop:
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Two layer neural nets and full backprop

0s r = 2z =gl
oW (1) 22— w4 pM)

a® = (Z<2>)

3)

e Last missing piece:

z( =
a® = <z<3>)

s = UTa®

e What’s the bottom layer’s
error message +(2)?

e Similar derivation to single layer model
e Main difference, we already have W(Q)T5(3) and need to apply

the chain rule again on f/(z(®)
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Two layer neural nets and full backprop

e Chainrulefor: s = U!f (W(Q)f (W(l)x + b(l)) + b(2))
Get intuition by deriving 7D as if it was a scalar

* |ntuitively, we have to sum over all the nodes coming into layer

Putting it all together: §® = (W(Q)Td(?’)) o f’ (2(2))
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Two layer neural nets and full backprop

- 0. r = 2 ,®
e Last missing piece: S = 53T L2~ w4
a? = ¥ (2(2))
* In general for any matrix W) at internal L3 @, 4@
layer [ and any error with regularization Eg 3 (3)
all backprop in standard multilayer ¢ =/ (Z )
neural networks boilsdown to 2 equations: s = UZq®

0

iy B = 8D @) w0

yw:(aymygwuoofqg%,

e Topand bottom layers have simpler +
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Visualization of intuition

88(1) _ 5@ ,0 with previous layer and f = %

e Let’s say we want 5

L0 g 22 g 0 |

Gradient w.r.t W2 = 0B)g2)T



Visualization of intuition

2(1) a(l

W)

W)

2(3)

2 (g
—
WeT §G)

--Reusing the 0¥ for downstream updates.
--Moving error vector across affine transformation simply requires multiplication with

the transpose of forward matrix

-

--Notice that the dimensions will line up perfectly too!
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Visualization of intuition

L0 o 22 a2 0 | g

I

W)T dB)

--Moving error vector across point-wise non-linearity requires point-wise
multiplication with local gradient of the non-linearity
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Visualization of intuition

S g 22 | 2(3)

WT §2) 502

Gradient w.r.t W = 9(2)g)T
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Backpropagation (Another explanation)

e Compute gradient of example-wise loss wrt
parameters

 Simply applying the derivative chain rule wisely

o
2=fly) y=g(x) FE =455

* If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient
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Simple Chain Rule

Jz __ 0z 0y
or Oy Ox
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Mu.L&E.pLe Palths Chain Rule
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Multiple Paths Chain Rule - General
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Chain Rule in Flow Graph

Flow graph: anydirected acyclic graph
node = computation result
arc = computationdependency

{yh Y2, ... yn}= successors of 2
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Backn‘?mp in Mu.L&E.—Layer Net

NLL = —log P(Y = y|x)
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Backn‘?rop in Greneral Flow Grapk

Single scalaroutput

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient = 1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Yz, ... yn} = successors of 2U

% En: 0z 0y;
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Automatic Differentiakion

45

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its outputand
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping



Summary

 Congrats!
* You survived the hardest part of this class.

* Everything else from now on is just more matrix
multiplications and backprop :)

* Next up:

* Recurrent Neural Networks
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