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Overview	Today:

• Organizational	Stuff

• Project	Tips

• From	one-layer	to	multi	layer	neural	network!

• Max-Margin	loss	and	backprop!	
(This	is	the	hardest	lecture	of	the	quarter)
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Announcement:	

• 1%	extra	credit	for	Piazza	participation!
• Hint	for	PSet1:	Understand	math	and	dimensionality,	then	add	

print	statements,	e.g.

• Student	survey	sent	out	last	night,	please	give	us	feedback	to	
improve	the	class	:)
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Class	Project

• Most	important	(40%)	and	lasting	result	of	the	class
• PSet 3	a	little	easier	to	have	more	time
• Start	early	and	clearly	define	your	task	and	dataset

• Project	types:
1. Apply	existing	neural	network	model	to	a	new	task
2. Implement	a	complex	neural	architecture
3. Come	up	with	a	new	neural	network	model
4. Theory
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Class	Project:	Apply	Existing	NNets to	Tasks

1. Define	Task:	
• Example:	Summarization

2. Define	Dataset
1. Search	for	academic	datasets	
• They	already	have	baselines
• E.g.:	Document	Understanding	Conference	(DUC)	

2. Define	your	own	(harder,	need	more	new	baselines)
• If	you’re	a	graduate	student:	connect	to	your	research
• Summarization,	Wikipedia:	Intro	paragraph	and	rest	of	large	article
• Be	creative:	Twitter,	Blogs,	News
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Class	Project:	Apply	Existing	NNets to	Tasks

3. Define	your	metric
• Search	online	for	well	established	metrics	on	this	task
• Summarization:	Rouge	(Recall-Oriented	Understudy	for	

Gisting Evaluation)	which	defines	n-gram	overlap	to	human	
summaries

4. Split	your	dataset!
• Train/Dev/Test
• Academic	dataset	often	come	pre-split
• Don’t	look	at	the	test	split	until	~1	week	before	deadline!
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Class	Project:	Apply	Existing	NNets to	Tasks

5. Establish	a	baseline
• Implement	the	simplest	model	(often	logistic	regression	on	

unigrams	and	bigrams)	first
• Compute	metrics	on	train	AND	dev
• Analyze	errors
• If	metrics	are	amazing	and	no	errors:	

done,	problem	was	too	easy,	restart	:)	

6. Implement	existing	neural	net	model	
• Compute	metric	on	train	and	dev
• Analyze	output	and	errors
• Minimum	bar	for	this	class
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Class	Project:	Apply	Existing	NNets to	Tasks

7. Always	be	close	to	your	data!
• Visualize	the	dataset
• Collect	summary	statistics
• Look	at	errors
• Analyze	how	different	hyperparameters affect	performance

8. Try	out	different	model	variants
• Soon	you	will	have	more	options
• Word	vector	averaging	model	(neural	bag	of	words)
• Fixed	window	neural	model
• Recurrent	neural	network
• Recursive	neural	network
• Convolutional	neural	network
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Class	Project:	A	New	Model	-- Advanced	Option

• Do	all	other	steps	first	(Start	early!)
• Gain	intuition	of	why	existing	models	are	flawed

• Talk	to	other	researchers,	 come	to	my	office	hours	a	lot
• Implement	new	models	and	iterate	quickly	over	ideas
• Set	up	efficient	experimental	framework
• Build	simpler	new	models	first
• Example	Summarization:

• Average	word	vectors	per	paragraph,	then	greedy	search
• Implement	language	model	or	autoencoder (introduced	later)
• Stretch	goal	for	potential	paper:	Generate	summary!
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Project	Ideas

• Summarization
• NER,	like	PSet 2	but	with	larger	data

Natural	Language	Processing	 (almost)	 from	Scratch,	Ronan	Collobert,	 Jason	Weston,	 Leon	Bottou,	Michael	
Karlen,	Koray Kavukcuoglu,	 Pavel Kuksa,	 http://arxiv.org/abs/1103.0398

• Simple	question	answering,A Neural	Network	for	Factoid	Question	Answering	over	
Paragraphs,	Mohit Iyyer,	Jordan	Boyd-Graber,	Leonardo	Claudino,	 Richard	Socher	and	Hal	Daumé III	(EMNLP	
2014)

• Image	to	text	mapping	or	generation,
Grounded	Compositional	 Semantics	for	Finding	 and	Describing	Images	with	Sentences,	 Richard	Socher,	 Andrej	
Karpathy,	Quoc V.	Le,	Christopher	 D.	Manning,	Andrew	Y.	Ng.	(TACL	2014)
or
Deep	Visual-Semantic	Alignments	 for	Generating	Image	Descriptions,	 Andrej	Karpathy,	Li	Fei-Fei

• Entity	level	sentiment
• Use	DL	to	solve	an	NLP	challenge	on	kaggle,

Develop	a	scoring	algorithm	for	student-written	 short-answer	responses,	 https://www.kaggle.com/c/asap-sas
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Default	project:	sentiment	classification

• Sentiment	on	movie	reviews:	http://nlp.stanford.edu/sentiment/
• Lots	of	deep	learning	baselines	and	methods	have	been	tried
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A	more	powerful	window	classifier

• Revisiting	

• Xwindow =	[		xmuseums xin xParis xare xamazing ]

• Assume	we	want	to	classify	whether	the	center	word	is	a	
location	or	not
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A	Single	Layer	Neural	Network

• A	single	layer	is	a	combination	of	a	linear	layer	
and	a	nonlinearity:

• The	neural	activations	a	can	then
be	used	to	compute	some	function

• For	instance,	an	unnormalized score	or	a	
softmax probability	we	care	about:
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Summary:	Feed-forward	Computation
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Computing	a	window’s	score	with	a	3-layer	neural	
net:	s	=	score(museums	in	Paris	are	amazing	)

Xwindow =	[		xmuseums xin xParis xare xamazing ]



Main	intuition	for	extra	layer

15

The	layer	learns	non-linear
interactions	between	the	
input	word	vectors.

Example:
only	if	“museums” is
first	vector	should
it	matter	that	“in” is
in	the	second	position

Xwindow =	[		xmuseums xin xParis xare xamazing ]



Summary:	Feed-forward	Computation

• s =	score(museums	in	Paris	are	amazing)
• sc =	score(Not	all	museums	in	Paris)

• Idea	for	training	objective:	make	score	of	true	window	
larger	and	corrupt	window’s	score	lower	(until	they’re	
good	enough):	minimize

• This	is	continuous,	can	perform	SGD
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Max-margin	Objective	function

• Objective	for	a	single	window:

• Each	window	with	a	location	at	its	center	should	have	
a	score	+1	higher	than	any	window	without	a	location	
at	its	center

• xxx		|ß 1				à|			ooo

• For	full	objective	function:	Sum	over	all	training	
windows
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Training	with	Backpropagation

Assuming	cost	J	is	>	0,	
compute	the	derivatives	of	s and	sc wrt all	the	
involved	variables:	U,	W,	b,	x
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Training	with	Backpropagation

• Let’s	consider	the	derivative	of	a	single	weight	Wij

• This	only	appears	inside	ai

• For	example:	W23 is	only	
used	to	compute	a2

x1 x2																	x3 +1

a1 a2

s		 U2

W23

19
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Training	with	Backpropagation

Derivative	of	weight	Wij:
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x1 x2																	x3 +1

a1 a2

s		 U2

W23



where																																																		for	logistic	f

Training	with	Backpropagation

Derivative	of	single	weight	Wij :

Local	error	
signal

Local	input	
signal
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x1 x2																	x3 +1

a1 a2

s		 U2

W23



• We	want	all	combinations	of
i =	1,	2 and j	=	1,	2,	3	à ?

• Solution:	Outer	product:
where																		is	the	
“responsibility”	or	error	message
coming	from	each	activation	a

Training	with	Backpropagation

• From	single	weight	Wij to	full	W:
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x1 x2																	x3 +1

a1 a2

s		 U2

W23
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Training	with	Backpropagation

• For	biases	b,	we	get:
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x1 x2																	x3 +1

a1 a2

s		 U2

W23



Training	with	Backpropagation

24

That’s	almost	backpropagation
It’s	simply	taking	derivatives	and	using	the	chain	rule!

Remaining	trick:	we	can	re-use	derivatives	computed	for	
higher	layers	in	computing	derivatives	for	lower	layers!

Example:	last	derivatives	of	model,	the	word	vectors	in	x



Training	with	Backpropagation

• Take	derivative	of	score	with	
respect	to	single	element	of	
word	vector

• Now,	we	cannot	just	take	
into	consideration	one	ai
because	each	xj is	connected	
to	all	the	neurons	above	and	
hence	xj influences	the	
overall	score	through	all	of	
these,	hence:

Re-used	part	of	previous	derivative25



Training	with	Backpropagation

• With																								,what	is	the	full	gradient?	à

• Observations:		The	error	message	± that	arrives	at	a	hidden	
layer	has	the	same	dimensionality	as	that	hidden	layer
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Putting	all	gradients	together:

• Remember:	Full	objective	function	for	each	window	was:	

• For	example:	gradient	for	U:
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Two	layer	neural	nets	and	full	backprop

• Let’s	look	at	a	2	layer	neural	network
• Same	window	definition	for	x
• Same	scoring	function	
• 2	hidden	layers	(carefully	not	superscripts	now!)
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Two	layer	neural	nets	and	full	backprop

• Fully	written	out	as	one	function:

• Same	derivation	as	before	for	W(2)	(now	sitting	on	a(1))
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W(1)

W(2)

S

a(2)

a(3)



Two	layer	neural	nets	and	full	backprop

• Same	derivation	as	before	for	top	W(2)	:

• In	matrix	notation:

where																																									and	± is	the	element-wise	product			
also	called	Hadamard product

• Last	missing	piece	for	understanding		general	backprop:
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Two	layer	neural	nets	and	full	backprop

• Last	missing	piece:	

• What’s	the	bottom	layer’s	
error	message	±(2)?

• Similar	derivation	to	single	layer	model

• Main	difference,	we	already	have																				and	need	to	apply	
the	chain	rule	again	on	
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Two	layer	neural	nets	and	full	backprop

• Chain	rule	for:

• Get	intuition	by	deriving														as	if	it	was	a	scalar

• Intuitively,	we	have	to	sum	over	all	the	nodes	coming	into	layer	

• Putting	it	all	together:
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The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�

(l) =
⇣
(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)
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Two	layer	neural	nets	and	full	backprop

• Last	missing	piece:	

• In	general	for	any	matrix	W(l)	at	internal	
layer	l and	any	error	with	regularization	ER
all	backprop in	standard	multilayer	
neural	networks	boils	down	to	2	equations:

• Top	and	bottom	layers	have	simpler	±
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The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�

(l) =
⇣
(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)
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where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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Which in one simplified vector notation becomes:
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In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �

(n
l

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.
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Visualization	of	intuition

• Let’s	say	we	want	 with	previous	layer	and	f	=	¾
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Our first example:  
Backpropagation using error vectors 

CS224D: Deep Learning for NLP 31 

1 σ 1 
z(1) a(1) 

 W(1) 
z(2) a(2)  W(2) 

z(3) s 

δ(3) 

Gradient w.r.t W(2) = δ(3)a(2)T 



Visualization	of	intuition
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Our first example:  
Backpropagation using error vectors 

CS224D: Deep Learning for NLP 32 

1 σ 1 
z(1) a(1) 

 W(1) 
z(2) a(2)  W(2) 

z(3) s 

δ(3) W(2)T δ(3) 

--Reusing the δ(3) for downstream updates. 
--Moving error vector across affine transformation simply requires multiplication with 
the transpose of forward matrix 
--Notice that the dimensions will line up perfectly too! 



Visualization	of	intuition
Our first example:  
Backpropagation using error vectors 

CS224D: Deep Learning for NLP 33 

1 σ 1 
z(1) a(1) 

 W(1) 
z(2) a(2)  W(2) 

z(3) s 

W(2)T δ(3) σ’(z(2))!W(2)T δ(3) 

 
= δ(2) 

 
--Moving error vector across point-wise non-linearity requires point-wise 
multiplication with local gradient of the non-linearity 
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Visualization	of	intuition
Our first example:  
Backpropagation using error vectors 

CS224D: Deep Learning for NLP 34 

1 σ 1 
z(1) a(1) 

 W(1) 
z(2) a(2)  W(2) 

z(3) s 

δ(2) 

Gradient w.r.t W(1) = δ(2)a(1)T 

W(1)T δ(2) 

4/12/16Richard	SocherLecture	5,	Slide	 37



Backpropagation (Another	explanation)
• Compute	gradient	of	example-wise	loss	wrt

parameters	

• Simply	applying	the	derivative	chain	rule	wisely

• If	computing	the	loss(example,	parameters)	is	O(n)	
computation,	then	so	is	computing	the	gradient
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Simple Chain Rule
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Multiple Paths Chain Rule
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Multiple	Paths	Chain	Rule	- General

…

41



Chain Rule in Flow Graph

…

…

…

Flow	graph:	any	directed	acyclic	graph
node	=	computation	result
arc	=	computation	dependency

=	successors	of	
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Back-Prop in Multi-Layer Net

…

…

43

h = sigmoid(Vx)



Back-Prop in General Flow Graph

…

…

…

=	successors	of	

1. Fprop:	visit	nodes	 in	topo-sort	order	
- Compute	value	of	node	given	predecessors

2. Bprop:
- initialize	output	gradient	=	1	
- visit	nodes	 in	reverse	order:

Compute	gradient	wrt each	node	using	
gradient	wrt successors

Single	 scalar	output

44



Automatic Differentiation

• The	gradient	computation	can	
be	automatically	inferred	from	
the	symbolic	expression	of	the	
fprop.

• Each	node	type	needs	to	know	
how	to	compute	its	output	and	
how	to	compute	the	gradient	
wrt its	inputs	given	the	
gradient	wrt its	output.

• Easy	and	fast	prototyping

45
…
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Summary

4/12/16Richard	Socher46

• Congrats!

• You	survived	the	hardest	part	of	this	class.

• Everything	else	from	now	on	is	just	more	matrix	
multiplications	and	backprop :)

• Next	up:	
• Recurrent	Neural	Networks


