CS224d
Deep NLP

Lecture 8:
Recurrent Neural Networks

Richard Socher
richard@metamind.io
Overview

• Feedback
• Traditional language models
• RNNs
• RNN language models
• Important training problems and tricks
 • Vanishing and exploding gradient problems
• RNNs for other sequence tasks
• Bidirectional and deep RNNs
Feedback

Pace of lectures? (52 responses)

- Just right: 63.5%
- Too fast: 25%
- Too slow: 11.5%

Difficulty of material? (51 responses)

- Just right: 70.6%
- Too difficult: 23.5%
- Too easy: 6%
Feedback ➔ Super useful ➔ Thanks!

Explain the intuition behind the math and models more

➔ some today :)

Give more examples, more toy examples and recap slides can help us understand faster

➔ Some toy examples today. Recap of main concepts next week

Consistency issues in dimensionality, row vs column, etc.

➔ All vectors should be column vectors ... unless I messed up, please send errata

I like the quality of the problem sets and especially the starter code. It would be nice to include ballpark values we should expect

➔ Will add in future Psets and on Piazza. We’ll also add dimensionality.
Feedback on Project

Please give list of proposed projects

• Great feedback, I asked research groups at Stanford and will compile a list for next Tuesday.

• We’ll move project proposal deadline to next week Thursday.

• Extra credit deadline for dataset + first baseline is for project milestone.
Language Models

A language model computes a probability for a sequence of words: $P(w_1, \ldots, w_T)$

- Useful for machine translation
 - Word ordering: $p($the cat is small$) > p($small the is cat$)$
 - Word choice: $p($walking home after school$) > p($walking house after school$)$
Traditional Language Models

- Probability is usually conditioned on window of n previous words

- An incorrect but necessary Markov assumption!

$$P(w_1, \ldots, w_m) = \prod_{i=1}^{m} P(w_i \mid w_1, \ldots, w_{i-1}) \approx \prod_{i=1}^{m} P(w_i \mid w_{i-(n-1)}, \ldots, w_{i-1})$$

- To estimate probabilities, compute for unigrams and bigrams (conditioning on one/two previous word(s)):

 $$p(w_2 \mid w_1) = \frac{\text{count}(w_1, w_2)}{\text{count}(w_1)}$$

 $$p(w_3 \mid w_1, w_2) = \frac{\text{count}(w_1, w_2, w_3)}{\text{count}(w_1, w_2)}$$
Traditional Language Models

• Performance improves with keeping around higher n-grams counts and doing smoothing and so-called backoff (e.g. if 4-gram not found, try 3-gram, etc)

• There are A LOT of n-grams!
 → Gigantic RAM requirements!

• Recent state of the art: *Scalable Modified Kneser-Ney Language Model Estimation* by Heafield et al.: “Using one machine with 140 GB RAM for 2.8 days, we built an unpruned model on 126 billion tokens”
Recurrent Neural Networks!

- RNNs tie the weights at each time step
- Condition the neural network on all previous words
- RAM requirement only scales with number of words
Recurrent Neural Network language model

Given list of word vectors: \(x_1, \ldots, x_{t-1}, x_t, x_{t+1}, \ldots, x_T \)

At a single time step:

\[
\begin{align*}
 h_t &= \sigma \left(W^{(hh)} h_{t-1} + W^{(hx)} x_t \right) \\
 \hat{y}_t &= \text{softmax} \left(W^{(S)} h_t \right) \\
 \hat{P}(x_{t+1} = v_j \mid x_t, \ldots, x_1) &= \hat{y}_{t,j}
\end{align*}
\]
Recurrent Neural Network language model

Main idea: we use the same set of W weights at all time steps!

Everything else is the same:

$$h_t = \sigma \left(W^{(hh)} h_{t-1} + W^{(hx)} x_{[t]} \right)$$

$$\hat{y}_t = \text{softmax} \left(W^{(S)} h_t \right)$$

$$\hat{P}(x_{t+1} = v_j \mid x_t, \ldots, x_1) = \hat{y}_{t,j}$$

$h_0 \in \mathbb{R}^{D_h}$ is some initialization vector for the hidden layer at time step 0

$x_{[t]}$ is the column vector of L at index $[t]$ at time step t

$W^{(hh)} \in \mathbb{R}^{D_h \times D_h}$, $W^{(hx)} \in \mathbb{R}^{D_h \times d}$, $W^{(S)} \in \mathbb{R}^{|V| \times D_h}$
Recurrent Neural Network language model

\[\hat{y} \in \mathbb{R}^{|V|} \] is a probability distribution over the vocabulary

Same cross entropy loss function but predicting words instead of classes

\[
J^{(t)}(\theta) = - \sum_{j=1}^{|V|} y_{t,j} \log \hat{y}_{t,j}
\]
Recurrent Neural Network language model

Evaluation could just be negative of average log probability over dataset of size (number of words) T:

$$J = -\frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{V} y_{t,j} \log \hat{y}_{t,j}$$

But more common: Perplexity: 2^J

Lower is better!
Training RNNs is hard

- Multiply the same matrix at each time step during forward prop

- Ideally inputs from many time steps ago can modify output y
- Take $\frac{\partial E_2}{\partial W}$ for an example RNN with 2 time steps! Insightful!
The vanishing/exploding gradient problem

- Multiply the same matrix at each time step during backprop
The vanishing gradient problem - Details

• Similar but simpler RNN formulation:

\[
\begin{align*}
 h_t &= Wf(h_{t-1}) + W^{(hx)}x_t \\
 \hat{y}_t &= W^{(s)}f(h_t)
\end{align*}
\]

• Total error is the sum of each error at time steps \(t \):

\[
\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W}
\]

• Hardcore chain rule application:

\[
\frac{\partial E_t}{\partial W} = \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}
\]
The vanishing gradient problem - Details

- Similar to backprop but less efficient formulation
- Useful for analysis we’ll look at:
 \[
 \frac{\partial E_t}{\partial W} = \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}
 \]
- Remember: \(h_t = W f(h_{t-1}) + W^{(hx)} x[t] \)
- More chain rule, remember:
 \[
 \frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^{t} \frac{\partial h_j}{\partial h_{j-1}}
 \]
- Each partial is a Jacobian:
 \[
 \frac{df}{dx} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}
 \]
The vanishing gradient problem - Details

• From previous slide:
 \[\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^{t} \frac{\partial h_j}{\partial h_{j-1}} \]

• Remember:
 \[h_t = W f(h_{t-1}) + W^{(hx)} x[t] \]

• To compute Jacobian, derive each element of matrix:
 \[\frac{\partial h_{j,m}}{\partial h_{j-1,n}} \]

\[\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^{t} \frac{\partial h_j}{\partial h_{j-1}} = \prod_{j=k+1}^{t} W^T \text{diag}[f'(h_{j-1})] \]

• Where:
 \[\text{diag}(z) = \begin{pmatrix} z_1 & & & \\ & z_2 & & \\ & & \ddots & \\ & & & z_{n-1} \end{pmatrix} \]

Check at home that you understand the diag matrix formulation.
The vanishing gradient problem - Details

• Analyzing the norms of the Jacobians, yields:

\[
\left\| \frac{\partial h_j}{\partial h_{j-1}} \right\| \leq \|W^T\| \|\text{diag}[f'(h_{j-1})]\| \leq \beta_W \beta_h
\]

• Where we defined \(\tilde{\cdot} \)'s as upper bounds of the norms

• The gradient is a product of Jacobian matrices, each associated with a step in the forward computation.

\[
\left\| \frac{\partial h_t}{\partial h_k} \right\| = \left\| \prod_{j=k+1}^{t} \frac{\partial h_j}{\partial h_{j-1}} \right\| \leq (\beta_W \beta_h)^{t-k}
\]

• This can become very small or very large quickly \([\text{Bengio et al 1994}]\), and the locality assumption of gradient descent breaks down. \(\rightarrow\) Vanishing or exploding gradient
Why is the vanishing gradient a problem?

- The error at a time step ideally can tell a previous time step from many steps away to change during backprop
The vanishing gradient problem for language models

- In the case of language modeling or question answering words from time steps far away are not taken into consideration when training to predict the next word

- Example:

 Jane walked into the room. John walked in too. It was late in the day. Jane said hi to ____
IPython Notebook with vanishing gradient example

• Example of simple and clean NNet implementation

• Comparison of sigmoid and ReLu units

• A little bit of vanishing gradient
In [21]:
 plt.plot(np.array(relu_array[:6000]), color='blue')
 plt.plot(np.array(sigm_array[:6000]), color='green')
 plt.title('Sum of magnitudes of gradients -- hidden layer neurons')

Out[21]: <matplotlib.text.Text at 0x10a331310>
Trick for exploding gradient: clipping trick

- The solution first introduced by Mikolov is to clip gradients to a maximum value.

\[\hat{g} \leftarrow \frac{\partial \mathcal{L}}{\partial \theta} \]

\[
\text{if } \|\hat{g}\| \geq \text{threshold} \text{ then}
\hat{g} \leftarrow \frac{\text{threshold}}{\|\hat{g}\|} \hat{g}
\]

\[
\text{end if}
\]

- Makes a big difference in RNNs.
Gradient clipping intuition

- Error surface of a single hidden unit RNN,
- High curvature walls
- Solid lines: standard gradient descent trajectories
- Dashed lines gradients rescaled to fixed size

Figure from paper: On the difficulty of training Recurrent Neural Networks, Pascanu et al. 2013
For vanishing gradients: Initialization + ReLus!

- Initialize $W^{(*)}$'s to identity matrix I
 and
 \[f(z) = \text{rect}(z) = \max(z, 0) \]
- \rightarrow Huge difference!

- Initialization idea first introduced in *Parsing with Compositional Vector Grammars*, Socher et al. 2013

- New experiments with recurrent neural nets 2 weeks ago (!) in *A Simple Way to Initialize Recurrent Networks of Rectified Linear Units*, Le et al. 2015
Perplexity Results

KN5 = Count-based language model with Kneser-Ney smoothing & 5-grams

Table 2. Comparison of different neural network architectures on Penn Corpus (1M words) and Switchboard (4M words).

<table>
<thead>
<tr>
<th>Model</th>
<th>Penn Corpus</th>
<th></th>
<th>Switchboard</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NN</td>
<td>NN+KN</td>
<td>NN</td>
<td>NN+KN</td>
</tr>
<tr>
<td>KN5 (baseline)</td>
<td>141</td>
<td></td>
<td>85.1</td>
<td></td>
</tr>
<tr>
<td>feedforward NN</td>
<td>137</td>
<td>113</td>
<td>81.3</td>
<td>75.4</td>
</tr>
<tr>
<td>RNN trained by BP</td>
<td>123</td>
<td>106</td>
<td>77.5</td>
<td>72.5</td>
</tr>
</tbody>
</table>

Table from paper *Extensions of recurrent neural network language model* by Mikolov et al 2011
Problem: Softmax is huge and slow

Trick: Class-based word prediction

\[p(w_t | \text{history}) = p(c_t | \text{history})p(w_t | c_t) \]

\[= p(c_t | h_t)p(w_t | c_t) \]

The more classes, the better perplexity but also worse speed:

<table>
<thead>
<tr>
<th>Classes</th>
<th>RNN</th>
<th>RNN+KN5</th>
<th>Min/epoch</th>
<th>Sec/test</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>134</td>
<td>112</td>
<td>12.8</td>
<td>8.8</td>
</tr>
<tr>
<td>50</td>
<td>136</td>
<td>114</td>
<td>9.8</td>
<td>6.7</td>
</tr>
<tr>
<td>100</td>
<td>136</td>
<td>114</td>
<td>9.1</td>
<td>5.6</td>
</tr>
<tr>
<td>200</td>
<td>136</td>
<td>113</td>
<td>9.5</td>
<td>6.0</td>
</tr>
<tr>
<td>400</td>
<td>134</td>
<td>112</td>
<td>10.9</td>
<td>8.1</td>
</tr>
<tr>
<td>1000</td>
<td>131</td>
<td>111</td>
<td>16.1</td>
<td>15.7</td>
</tr>
<tr>
<td>2000</td>
<td>128</td>
<td>109</td>
<td>25.3</td>
<td>28.7</td>
</tr>
<tr>
<td>4000</td>
<td>127</td>
<td>108</td>
<td>44.4</td>
<td>57.8</td>
</tr>
<tr>
<td>6000</td>
<td>127</td>
<td>109</td>
<td>70</td>
<td>96.5</td>
</tr>
<tr>
<td>8000</td>
<td>124</td>
<td>107</td>
<td>107</td>
<td>148</td>
</tr>
<tr>
<td>Full</td>
<td>123</td>
<td>106</td>
<td>154</td>
<td>212</td>
</tr>
</tbody>
</table>
One last implementation trick

- You only need to pass backwards through your sequence once and accumulate all the deltas from each E_t
Sequence modeling for other tasks

• Classify each word into:
 • NER
 • Entity level sentiment in context
 • opinionated expressions

• Example application and slides from paper *Opinion Mining with Deep Recurrent Nets* by Irsoy and Cardie 2014
Opinion Mining with Deep Recurrent Nets

Goal: Classify each word as

direct subjective expressions (DSEs) and expressive subjective expressions (ESEs).

DSE: Explicit mentions of private states or speech events expressing private states

ESE: Expressions that indicate sentiment, emotion, etc. without explicitly conveying them.
Example Annotation

In BIO notation (tags either begin-of-entity (B_X) or continuation-of-entity (I_X)): The committee, [as usual]_{ESE}, [has refused to make any statements]_{DSE}.

The committee, as usual, has refused to make any statements.
Approach: Recurrent Neural Network

- Notation from paper (so you get used to different ones)

\[h_t = f(Wx_t + Vh_{t-1} + b) \]
\[y_t = g(Uh_t + c) \]

- \(x \) represents a token (word) as a vector.
- \(y \) represents the output label (B, I or O) \(\text{-- } g = \text{softmax} \)
- \(h \) is the memory, computed from the past memory and current word. It summarizes the sentence up to that time.
Bidirectional RNNs

Problem: For classification you want to incorporate information from words both preceding and following

\[y_t = g(U[\hat{h}_t; \hat{h}_t] + c) \]

\[\hat{h}_t = f(\overrightarrow{W}x_t + \overrightarrow{V}h_{t-1} + \overrightarrow{b}) \]

\[\hat{h}_t = f(\overleftarrow{W}x_t + \overleftarrow{V}h_{t+1} + \overleftarrow{b}) \]

\[h = [\hat{h}; \hat{h}] \text{ now represents (summarizes) the past and future around a single token.} \]
Deep Bidirectional RNNs

Each memory layer passes an intermediate sequential representation to the next.

\[
\overrightarrow{h_t}^{(i)} = f(\overrightarrow{W^{(i)}} h_t^{(i-1)} + \overrightarrow{V^{(i)}} h_{t-1} + \overrightarrow{b^{(i)}}) \\
\overleftarrow{h_t}^{(i)} = f(\overleftarrow{W^{(i)}} h_t^{(i-1)} + \overleftarrow{V^{(i)}} h_{t+1} + \overleftarrow{b^{(i)}}) \\
y_t = g(U[\overrightarrow{h_{(L)}} ; \overleftarrow{h_{(L)}}] + c)
\]
Data

- **MPQA 1.2 corpus (Wiebe et al., 2005)**
- consists of 535 news articles (11,111 sentences)
- manually labeled with DSE and ESEs at the phrase level
- **Evaluation: F1**

\[
\text{precision} = \frac{tp}{tp + fp} \\
\text{recall} = \frac{tp}{tp + fn} \\
F1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]
Evaluation

Results: Deep vs Shallow RNNs

<table>
<thead>
<tr>
<th>Prop F1</th>
<th>DSE</th>
<th>Bin F1</th>
<th># Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>47</td>
<td>66</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>49</td>
<td>68</td>
<td>2</td>
</tr>
<tr>
<td>68</td>
<td>51</td>
<td>70</td>
<td>3</td>
</tr>
<tr>
<td>70</td>
<td>53</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>72</td>
<td>55</td>
<td>74</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bin F1</th>
<th># Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td>68</td>
<td>3</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>72</td>
<td>5</td>
</tr>
</tbody>
</table>

- 24k
- 200k
Recap

- Recurrent Neural Network is one of the best deepNLP model families
- Training them is hard because of vanishing and exploding gradient problems
- They can be extended in many ways and their training improved with many tricks (more to come)
- Next week: Most important and powerful RNN extensions with LSTMs and GRUs