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Overview
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• Projects

• Recap	of	most	important	concepts	&	equations

• Wrap	up:	Deep	RNNs	and	F1	evaluation

• Machine	translation

• Fancy	RNN	Models	tackling	MT:
• Gated	Recurrent	Units	by	Cho	et	al.	(2014)

• Long-Short-Term-Memories	
by	Hochreiter and	Schmidhuber (1997)



Recap	of	most	important	concepts
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Word2Vec

Glove

Nnet &	Max-margin



Recap	of	most	important	concepts
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Multilayer	Nnet

&

Backprop

The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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Now,

(�(nl

))T
@a

(n
l

)

@W

(n
l

�2)
ij

= (�(nl

))T
@z

(n
l

)

@W

(n
l

�2)
ij

(49)

= (�(nl

))T
@

@W

(n
l

�2)
ij

W

(n
l

�1)
a

(n
l

�1) (50)

= (�(nl

))T
@

@W

(n
l

�2)
ij

W

(n
l

�1)
·i a

(n
l

�1)
i

(51)

= (�(nl

))TW (n
l

�1)
·i

@

@W

(n
l

�2)
ij

a

(n
l

�1)
i

(52)

= (�(nl

))TW (n
l

�1)
·i

@

@W

(n
l

�2)
ij

f(z(nl

�1)
i

) (53)

= (�(nl

))TW (n
l

�1)
·i

@

@W

(n
l

�2)
ij

f(W (n
l

�2)
i· a

(n
l

�2)) (54)

= (�(nl

))TW (n
l

�1)
·i f

0(z(nl

�1)
i

)a(nl

�2)
j

(55)

=
⇣
(�(nl

))TW (n
l

�1)
·i

⌘
f

0(z(nl

�1)
i

)a(nl

�2)
j

(56)

=

0

@
s

l+1X

j=1

W

(n
l

�1)
ji

�

(n
l

)
j

)

1

A
f

0(z(nl

�1)
i

)

| {z }

a

(n
l

�2)
j

(57)

= �

(n
l

�1)
i

a

(n
l

�2)
j

(58)

where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�
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where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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Which in one simplified vector notation becomes:
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In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �

(n
l

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.

8



Recap	of	most	important	concepts
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Recurrent	Neural	Networks

Cross	Entropy	Error

Mini-batched	SGD



Deep	Bidirectional	RNNs	by	Irsoy and	Cardie
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Going Deep 
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Data
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• MPQA	1.2	corpus	(Wiebe et	al.,	2005)	

• consists	of	535	news	articles	(11,111	sentences)	

• manually	labeled	at	the	phrase	level	

• Evaluation:	F1



Evaluation
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Results: Deep vs Shallow RNNs 
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Machine	Translation
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• Methods	are	statistical	

• Use	parallel	corpora
• European	Parliament	

• First	parallel	corpus:
• Rosetta	Stone	à

• Traditional	systems
are	very	complex



Current	statistical	machine	translation	systems

• Source	language	f,	e.g.	French
• Target	language	e,	e.g.	English
• Probabilistic	formulation	(using	Bayes	rule)

• Translation	model	p(f|e)	trained	on	parallel	corpus
• Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)

4/26/16Richard	Socher10

TranslationModel
p(f|e)French	à à Pieces	of	English	à Language	Model

p(e)

Decoder
argmax p(f|e)p(e) à Proper	English



Step	1:	Alignment	
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Goal:	know	which	word	or	phrases	in	source	language	
would	translate	to	what	words	or	phrases	in	target	
language?	à Hard	already!

Alignment	examples	from	Chris	Manning/CS224n

9/24/14 
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Statistical MT 

Pioneered at IBM in the early 1990s 
 
Let’s make a probabilistic model of translation 
P(e | f) 
 
Suppose f is de rien 
P(you’re welcome | de rien)  = 0.45 
P(nothing | de rien)    = 0.13 
P(piddling | de rien)   = 0.01 
P(underpants | de rien)   = 0.000000001 

Hieroglyphs 

Statistical Solution 

•  Parallel Texts 
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–  Instruction Manuals 
–  Hong Kong/Macao 

Legislation 
–  Canadian Parliament 

Hansards 
–  United Nations Reports 
–  Official Journal 

of the European 
Communities 

–  Translated news 

•  Parallel Texts Hmm, every time one sees  
“banco”, translation is  
�bank” or “bench” …   
If it’s “banco de…”, it 
always becomes “bank”,  
never “bench”… 

A Division of Labor 

Spanish Broken 
English 
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Spanish/English 
Bilingual Text 

English 
Text 

Statistical Analysis Statistical Analysis 

Que hambre tengo yo I am so hungry 

Translation 
Model P(f|e) 

Language 
Model P(e) 

Decoding algorithm 
argmax P(f|e) * P(e) 
     e 

What hunger have I, 
Hungry I am so, 
I am so hungry, 
Have I that hunger … 

Fidelity Fluency 

Alignments 
We can factor the translation model P(f | e ) 
by identifying alignments (correspondences) 
between words in f and words in e 
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Step	1:	Alignment	
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Step	1:	Alignment	
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•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
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•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
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P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 

Really	hard	:/	
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Step	1:	Alignment	
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• We	could	spend	an	entire	lecture	on	alignment	models

• Not	only	single	words	but	could	use	phrases,	syntax

• Then	consider	reordering	of	translated	phrases

Example	from	Philipp	Koehn

Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

er geht ja nicht nach hause

he does not go home

• Pick phrase in input, translate

Chapter 6: Decoding 6



After	many	steps
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Each	phrase	in	source	language	has	many	possible	
translations	resulting	in	large	search	space:

Translation Options

he

er geht ja nicht nach hause

it
, it

, he

is
are

goes
go

yes
is

, of course

not
do not

does not
is not

after
to

according to
in

house
home

chamber
at home

not
is not

does not
do not

home
under house
return home

do not

it is
he will be

it goes
he goes

is
are

is after all
does

to
following
not after

not to

,

not
is not

are not
is not a

• Many translation options to choose from

– in Europarl phrase table: 2727 matching phrase pairs for this sentence
– by pruning to the top 20 per phrase, 202 translation options remain

Chapter 6: Decoding 8



Decode:	Search	for	best	of	many	hypotheses
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Hard	search	problem	that	also	includes	language	model
Decoding: Find Best Path

er geht ja nicht nach hause

are

it

he
goes

does not

yes

go

to

home

home

backtrack from highest scoring complete hypothesis

Chapter 6: Decoding 15



Traditional	MT
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• Skipped	hundreds	of	important	details

• A	lot	of	human	feature	engineering

• Very	complex	systems

• Many	different,	independent	machine	learning	
problems



Deep	learning	to	the	rescue!	…	?
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Maybe,	we	could	translate	directly	with	an	RNN?

Decoder:

Encoder

x1 x2 x3

h1 h2 h3
W W

y1 y2

Echt dicke Kiste

Awesome	 sauce

This	needs to	
capture	the	
entire	phrase!



MT	with	RNNs	– Simplest	Model
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Encoder:

Decoder:		

Minimize	cross	entropy	error	for	all	target	words	
conditioned	on	source	words

It’s	not	quite	that	simple	;)	



RNN	Translation	Model	Extensions
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1.	Train	different	RNN	weights	for	encoding	and	decoding

x1 x2 x3

h1 h2 h3
W W

y1 y2

Echt dicke Kiste

Awesome	 sauce



RNN	Translation	Model	Extensions
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Notation:	Each	input	of	Á has	its	own	linear	
transformation	matrix.	Simple:

2. Compute	every	hidden	state	in	
decoder	from
• Previous	hidden	state	(standard)

• Last	hidden	vector	of	encoder	c=hT
• Previous	predicted	output	word	yt-1

2 RNN Encoder–Decoder

2.1 Preliminary: Recurrent Neural Networks
A recurrent neural network (RNN) is a neural net-
work that consists of a hidden state h and an
optional output y which operates on a variable-
length sequence x = (x1, . . . , xT ). At each time
step t, the hidden state hhti of the RNN is updated
by

hhti = f

�

hht�1i, xt
�

, (1)

where f is a non-linear activation func-
tion. f may be as simple as an element-
wise logistic sigmoid function and as com-
plex as a long short-term memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997).

An RNN can learn a probability distribution
over a sequence by being trained to predict the
next symbol in a sequence. In that case, the output
at each timestep t is the conditional distribution
p(xt | xt�1, . . . , x1). For example, a multinomial
distribution (1-of-K coding) can be output using a
softmax activation function

p(xt,j = 1 | xt�1, . . . , x1) =
exp

�

wjhhti
�

PK
j0=1 exp

�

wj0hhti
�

,

(2)

for all possible symbols j = 1, . . . ,K, where wj

are the rows of a weight matrix W. By combining
these probabilities, we can compute the probabil-
ity of the sequence x using

p(x) =
T
Y

t=1

p(xt | xt�1, . . . , x1). (3)

From this learned distribution, it is straightfor-
ward to sample a new sequence by iteratively sam-
pling a symbol at each time step.

2.2 RNN Encoder–Decoder
In this paper, we propose a novel neural network
architecture that learns to encode a variable-length
sequence into a fixed-length vector representation
and to decode a given fixed-length vector rep-
resentation back into a variable-length sequence.
From a probabilistic perspective, this new model
is a general method to learn the conditional dis-
tribution over a variable-length sequence condi-
tioned on yet another variable-length sequence,
e.g. p(y1, . . . , yT 0 | x1, . . . , xT ), where one

�� �� ��

��� �� ��

�

�	�
�	�


��
�	�
Figure 1: An illustration of the proposed RNN
Encoder–Decoder.

should note that the input and output sequence
lengths T and T

0 may differ.
The encoder is an RNN that reads each symbol

of an input sequence x sequentially. As it reads
each symbol, the hidden state of the RNN changes
according to Eq. (1). After reading the end of
the sequence (marked by an end-of-sequence sym-
bol), the hidden state of the RNN is a summary c
of the whole input sequence.

The decoder of the proposed model is another
RNN which is trained to generate the output se-
quence by predicting the next symbol yt given the
hidden state hhti. However, unlike the RNN de-
scribed in Sec. 2.1, both yt and hhti are also con-
ditioned on yt�1 and on the summary c of the input
sequence. Hence, the hidden state of the decoder
at time t is computed by,

hhti = f

�

hht�1i, yt�1, c
�

,

and similarly, the conditional distribution of the
next symbol is

P (yt|yt�1, yt�2, . . . , y1, c) = g

�

hhti, yt�1, c
�

.

for given activation functions f and g (the latter
must produce valid probabilities, e.g. with a soft-
max).

See Fig. 1 for a graphical depiction of the pro-
posed model architecture.

The two components of the proposed RNN
Encoder–Decoder are jointly trained to maximize
the conditional log-likelihood

max

✓

1

N

N
X

n=1

log p✓(yn | xn), (4)

Cho	et	al.	2014



Different	picture,	same	idea
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RNN	Translation	Model	Extensions
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3. Train	stacked/deep	RNNs	
with	multiple	layers

4. Potentially	train	
bidirectional	encoder

5. Train	input	sequence	in	reverse	order	for	simple	
optimization	problem:	Instead	of	A	B	C	à X	Y,	
train	with	C	B	A	à X	Y

Going Deep 

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L )
;h
!
t
(L )
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential 
representation to the next. 

h(2)

h(1)



6.	Main	Improvement:	Better	Units
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• More	complex	hidden	unit	computation	in	
recurrence!

• Gated	Recurrent	Units	(GRU)
introduced	by	Cho	et	al.	2014	(see	reading	list)

• Main	ideas:	
• keep	around	memories	to	capture	long	distance	

dependencies

• allow	error	messages	to	flow	at	different	strengths	
depending	on	the	inputs



GRUs
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• Standard	RNN	computes	hidden	layer	at	next	time	step	
directly:

• GRU	first	computes	an	update	gate (another	layer)	
based	on	current	input	word	vector	and	hidden	state

• Compute	reset	gate	similarly	but	with	different	weights



GRUs
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• Update	gate	

• Reset	gate

• New	memory	content:
If	reset	gate	unit	is	~0,	then	this	ignores	previous	
memory	and	only	stores	the	new	word	information	

• Final	memory	at	time	step	combines	current	and	
previous	time	steps:		



Attempt	at	a	clean	illustration
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rtrt-1

zt-1

~ht~ht-1

zt

ht-1 ht

xtxt-1Input:

Reset	gate

Update	gate

Memory	 (reset)

Final	memory



GRU	intuition
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• If	reset	is	close	to	0,	
ignore	previous	hidden	state
à Allows	model	to	drop	
information	that	is	irrelevant
in	the	future

• Update	gate	z	controls	how	much	of	past	state	should	
matter	now.
• If	z	close	to	1,	then	we	can	copy	information	in	that	unit	

through	many	time	steps!	Less	vanishing	gradient!

• Units	with	short-term	dependencies	often	have	reset	
gates	very	active



GRU	intuition
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• Units	with	long	term	
dependencies	have	active
update	gates	z

• Illustration:	

• Derivative	of																	?	à rest	is	same	chain	rule,	but
implement	with	modularization or	automatic	
differentiation

where ✓ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
p✓(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers
and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = �

⇣

[Wrx]j +
⇥

Urhht�1i
⇤

j

⌘

, (5)

where � is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht�1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = �

⇣

[Wzx]j +
⇥

Uzhht�1i
⇤

j

⌘

. (6)

The actual activation of the proposed unit hj is
then computed by

h

hti
j = zjh

ht�1i
j + (1� zj)

˜

h

hti
j , (7)

where

˜

h

hti
j = �

⇣

[Wx]j +
⇥

U
�

r� hht�1i
�⇤

j

⌘

. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

�

�� �� �

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state ˜

h. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and ˜

h.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) / p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-



Long-short-term-memories	(LSTMs)
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• We	can	make	the	units	even	more	complex

• Allow	each	time	step	to	modify	
• Input	gate	(current	cell	matters)

• Forget	(gate	0,	forget	past)

• Output	(how	much	cell	is	exposed)

• New	memory	cell

• Final	memory	cell:

• Final	hidden	state:	



Illustrations	all	a	bit	overwhelming	;)
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http://people.idsia.ch/~juergen/lstm/sld017.htm

http://deeplearning.net/tutorial/lstm.html

Intuition:	memory	cells	can	keep	information	 intact,	unless	inputs	makes	them
forget	it	or	overwrite	it	with	new	input.
Cell	can	decide	to	output	 this	information	or	just	store	it

Long	Short-Term	Memory	by	Hochreiter and	Schmidhuber (1997)

inj

inj
out j

out j

w ic j

wic j

yc j

g h1.0

net
w i w i

yinj yout j

net c j

g yinj

= g+sc j
sc j

yinj

h yout j

net



LSTMs	are	currently	very	hip!
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• En	vogue	default	model	for	most	sequence	labeling	
tasks

• Very	powerful,	especially	when	stacked	and	made	
even	deeper	(each	hidden	layer	is	already	computed	
by	a	deep	internal	network)

• Most	useful	if	you	have	lots	and	lots	of	data



Deep	LSTMs	compared	to	traditional	systems	2015
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	 to	Sequence	Learning	by	Sutskever et	al.	2014	



Deep	LSTMs	(with	a	lot	more	tweaks)	today
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WMT	2016	competition	results	from	yesterday



Deep	LSTM	for	Machine	Translation
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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She gave me a card in the garden
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Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	 to	Sequence	Learning	by	Sutskever et	al.	2014	

PCA	of	vectors	from	last	time	step	hidden	 layer



Further	Improvements:	More	Gates!

4/26/16Richard	Socher37

Gated	Feedback	Recurrent	Neural	Networks,	Chung	et	al.	2015
Gated Feedback Recurrent Neural Networks

(a) Conventional stacked RNN (b) Gated Feedback RNN

Figure 1. Illustrations of (a) conventional stacking approach and (b) gated-feedback approach to form a deep RNN architecture. Bullets
in (b) correspond to global reset gates. Skip connections are omitted to simplify the visualization of networks.

The global reset gate is computed as:

g

i!j

= �

⇣
w

i!j

g

h

j�1
t

+ u

i!j

g

h

⇤
t�1

⌘
, (12)

where L is the number of hidden layers, wi!j

g

and u

i!j

g

are the weight vectors for the input and the hidden states of
all the layers at time-step t � 1, respectively. For j = 1,
h

j�1
t

is x
t

.

The global reset gate gi!j is applied collectively to the sig-
nal from the i-th layer hi

t�1 to the j-th layer hj

t

. In other
words, the signal from the layer i to the layer j is controlled
based on the input and the previous hidden states.

Fig. 1 illustrates the difference between the conventional
stacked RNN and our proposed GF-RNN. In both mod-
els, information flows from lower layers to upper layers,
respectively, corresponding to finer timescale and coarser
timescale. The GF-RNN, however, further allows infor-
mation from the upper recurrent layer, corresponding to
coarser timescale, flows back into the lower layers, corre-
sponding to finer timescales.

We call this RNN with a fully-connected recurrent tran-
sition and global reset gates, a gated-feedback RNN (GF-
RNN). In the remainder of this section, we describe how to
use the previously described LSTM unit, GRU, and more
traditional tanh unit in the GF-RNN.

3.1. Practical Implementation of GF-RNN

3.1.1. tanh UNIT

For a stacked tanh-RNN, the signal from the previous
time-step is gated. The hidden state of the j-th layer is

computed by

h

j

t

=tanh

 
W

j�1!j

h

j�1
t

+

LX

i=1

g

i!j

U

i!j

h

i

t�1

!
,

where W

j�1!j and U

i!j are the weight matrices of the
incoming connections from the input and the i-th module,
respectively. Compared to Eq. (2), the only difference is
that the previous hidden states are controlled by the global
reset gates.

3.1.2. LONG SHORT-TERM MEMORY AND GATED
RECURRENT UNIT

In the cases of LSTM and GRU, we do not use the global
reset gates when computing the unit-wise gates. In other
words, Eqs. (5)–(7) for LSTM, and Eqs. (9) and (11) for
GRU are not modified. We only use the global reset gates
when computing the new state (see Eq. (4) for LSTM, and
Eq. (10) for GRU).

The new memory content of an LSTM at the j-th layer is
computed by

˜

c

j

t

= tanh
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In the case of a GRU, similarly,
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4. Experiment Settings

4.1. Tasks

We evaluated the proposed gated-feedback RNN (GF-
RNN) on character-level language modeling and Python



Summary
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• Recurrent	Neural	Networks	are	powerful

• A	lot	of	ongoing	work	right	now

• Gated	Recurrent	Units	even	better

• LSTMs	maybe	even	better	(jury	still	out)

• This	was	an	advanced	lecture	à gain	intuition,	
encourage	exploration

• Next	up:	Recursive	Neural	Networks
simpler	and	also	powerful	:)


