CS224d Deep NLP

Lecture 8: Recap, Projects and Fancy Recurrent Neural Networks for Machine Translation

Richard Socher richard@metamind.io

Overview

- **Projects**
- Recap of most important concepts & equations
- Wrap up: Deep RNNs and F1 evaluation
- Machine translation
- Fancy RNN Models tackling MT:
- Advanced, cutting edge, blast from the past Gated Recurrent Units by Cho et al. (2014)
 - Long-Short-Term-Memories by Hochreiter and Schmidhuber (1997)

Recap of most important concepts

Word2Vec
$$J_t(\theta) = \log \sigma \left(u_o^T v_c \right) + \sum_{j \sim P(w)} \left[\log \sigma \left(-u_j^T v_c \right) \right]$$

Glove
$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2$$

Nnet & Max-margin
$$s = U^T f(Wx + b)$$

$$J = \max(0, 1 - s + s_c)$$

Recap of most important concepts

Multilayer Nnet

&

Backprop

$$x = z^{(1)} = a^{(1)}$$

$$z^{(2)} = W^{(1)}x + b^{(1)}$$

$$a^{(2)} = f\left(z^{(2)}\right)$$

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$$

$$a^{(3)} = f\left(z^{(3)}\right)$$

$$s = U^T a^{(3)}$$

$$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \circ f'(z^{(l)}),$$

$$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \circ f'(z^{(l)}), \qquad \frac{\partial}{\partial W^{(l)}} E_R = \delta^{(l+1)} (a^{(l)})^T + \lambda W^{(l)}$$

Recap of most important concepts

Recurrent Neural Networks

$$h_t = \sigma \left(W^{(hh)} h_{t-1} + W^{(hx)} x_{[t]} \right)$$

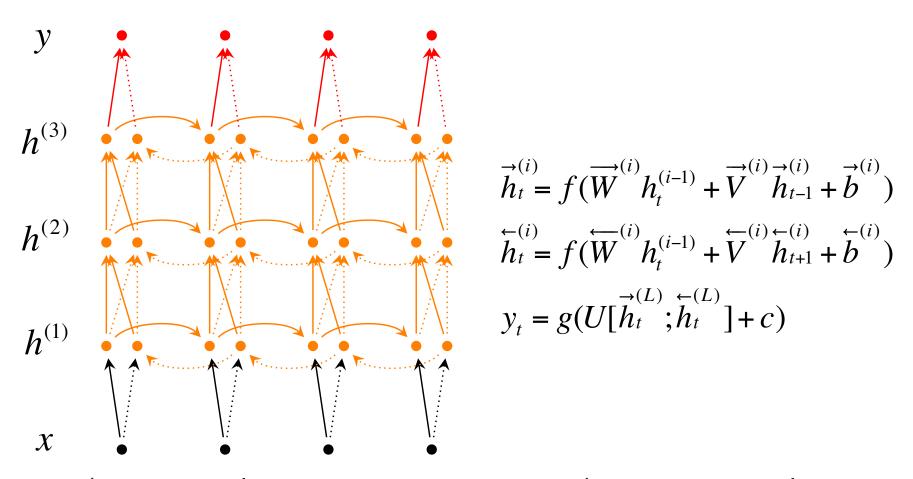
$$\hat{y}_t = \operatorname{softmax} \left(W^{(S)} h_t \right)$$

Cross Entropy Error
$$J^{(t)}(heta) = -\sum_{j=1}^{|V|} y_{t,j} \log \hat{y}_{t,j}$$

Mini-batched SGD

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J_{t:t+B}(\theta)$$

Deep Bidirectional RNNs by Irsoy and Cardie



Each memory layer passes an intermediate sequential representation to the next.

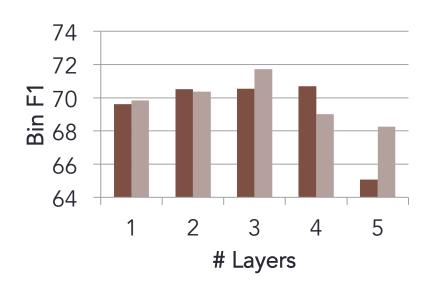
Data

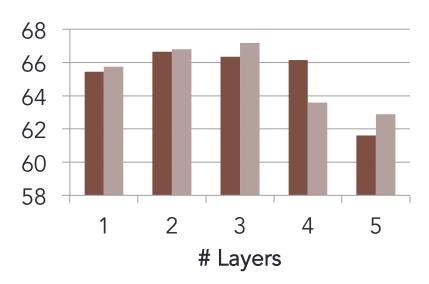
- MPQA 1.2 corpus (Wiebe et al., 2005)
- consists of 535 news articles (11,111 sentences)
- manually labeled at the phrase level
- Evaluation: F1

Total population	Condition positive	Condition negative		
Test outcome positive	True positive	False positive (Type I error)		
Test outcome negative	False negative (Type II error)	True negative		

$$\begin{aligned} & \operatorname{precision} = \frac{tp}{tp + fp} \\ & \operatorname{recall} = \frac{tp}{tp + fn} \\ & F1 = 2 \cdot \frac{\operatorname{precision} \cdot \operatorname{recall}}{\operatorname{precision} + \operatorname{recall}} \end{aligned}$$

Evaluation



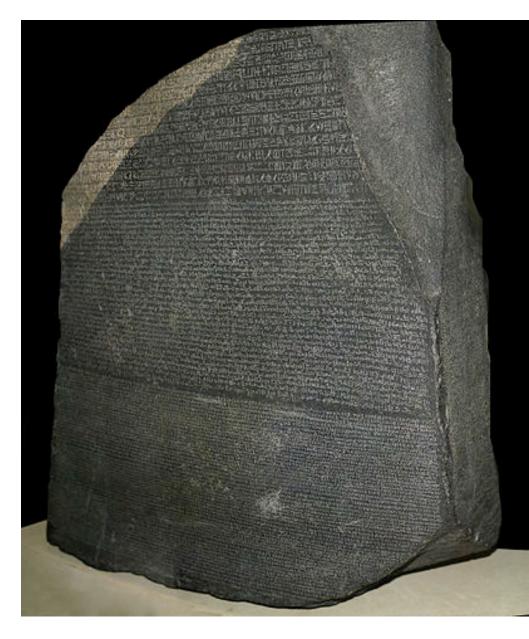


■ 24k

200k

Machine Translation

- Methods are statistical
- Use parallel corpora
 - European Parliament
- First parallel corpus:
 - Rosetta Stone →
- Traditional systems are very complex

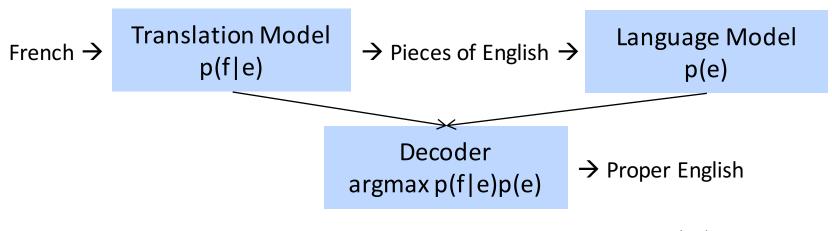


Current statistical machine translation systems

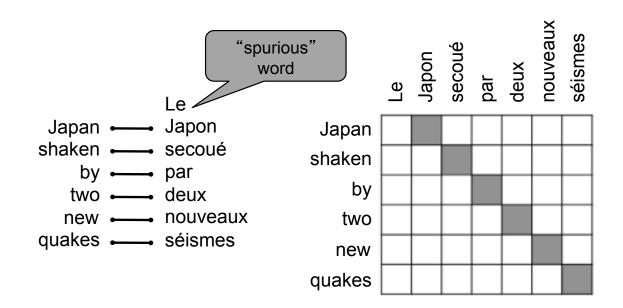
- Source language f, e.g. French
- Target language e, e.g. English
- Probabilistic formulation (using Bayes rule)

$$\hat{e} = \operatorname{argmax}_{e} p(e|f) = \operatorname{argmax}_{e} p(f|e)p(e)$$

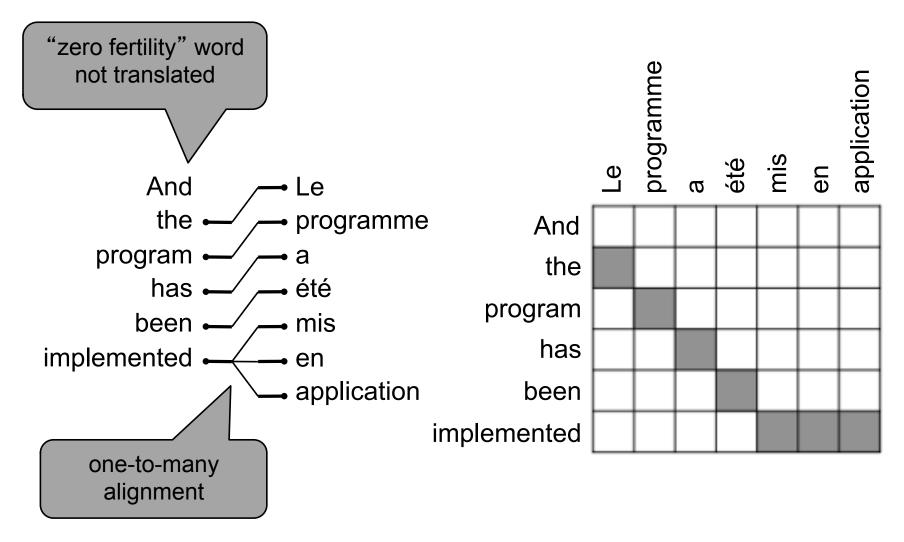
- Translation model p(f|e) trained on parallel corpus
- Language model p(e) trained on English only corpus (lots, free!)



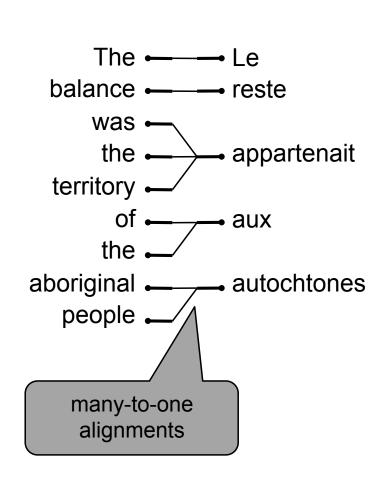
Goal: know which word or phrases in source language would translate to what words or phrases in target language? → Hard already!

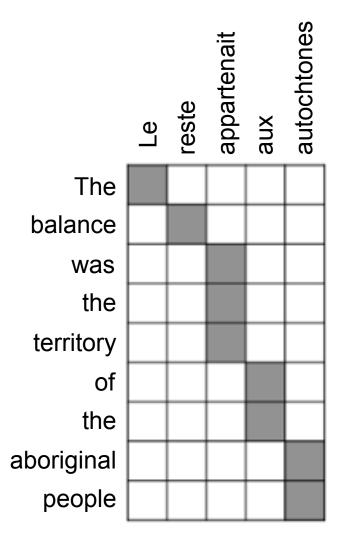


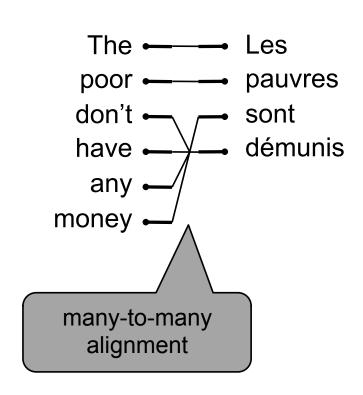
Alignment examples from Chris Manning/CS224n

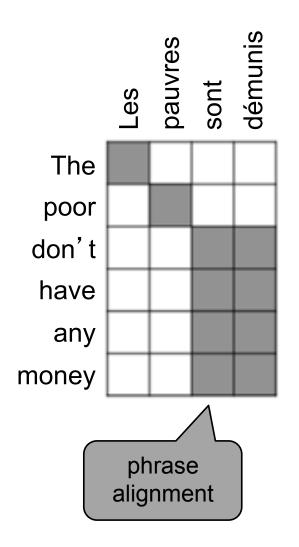


Really hard:/

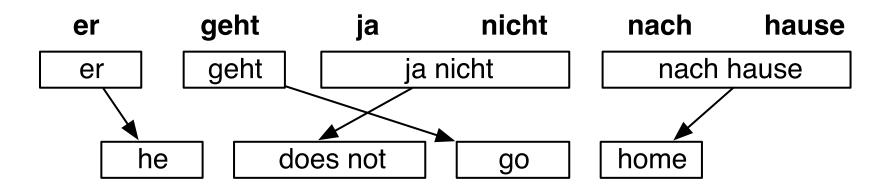








- We could spend an entire lecture on alignment models
- Not only single words but could use phrases, syntax
- Then consider reordering of translated phrases

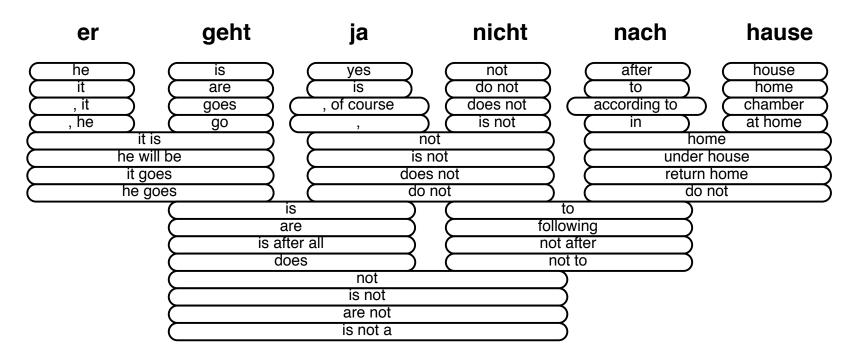


Example from Philipp Koehn

After many steps

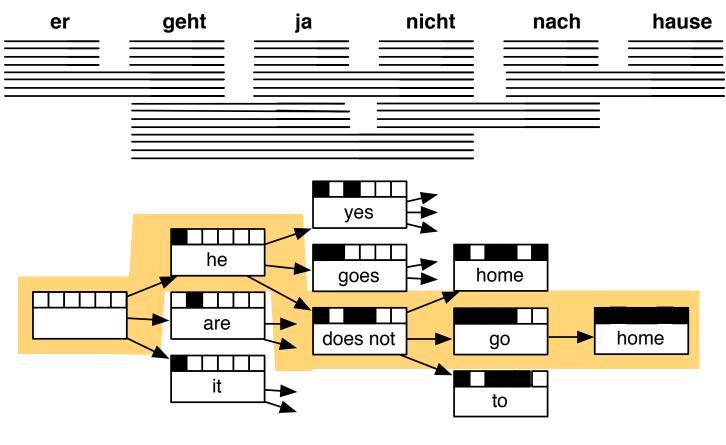
Each phrase in source language has many possible translations resulting in large search space:

Translation Options



Decode: Search for best of many hypotheses

Hard search problem that also includes language model



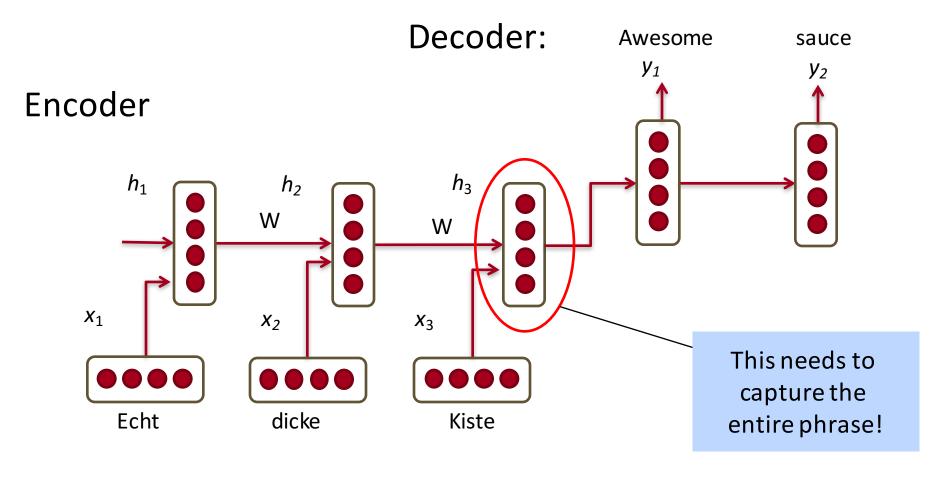
Traditional MT

- Skipped hundreds of important details
- A lot of human feature engineering
- Very complex systems

 Many different, independent machine learning problems

Deep learning to the rescue! ...?

Maybe, we could translate directly with an RNN?



Richard Socher 4/26/16

19

MT with RNNs – Simplest Model

Encoder:
$$h_t = \phi(h_{t-1}, x_t) = f\left(W^{(hh)}h_{t-1} + W^{(hx)}x_t\right)$$

Decoder:
$$h_t = \phi(h_{t-1}) = f\left(W^{(hh)}h_{t-1}\right)$$

$$y_t = softmax\left(W^{(S)}h_t\right)$$

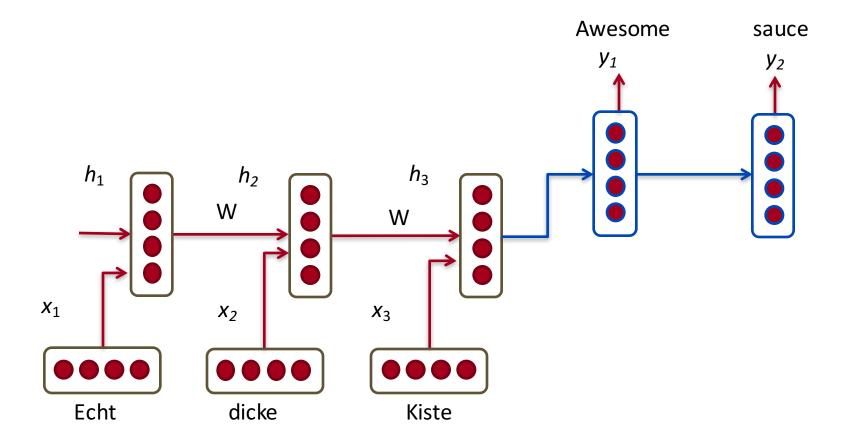
Minimize cross entropy error for all target words conditioned on source words

$$\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(y^{(n)}|x^{(n)})$$

It's not quite that simple ;)

RNN Translation Model Extensions

1. Train different RNN weights for encoding and decoding

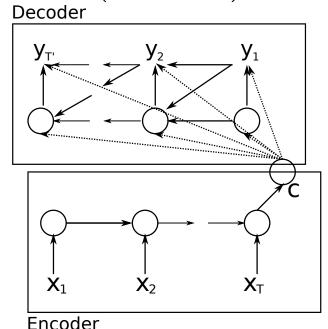


RNN Translation Model Extensions

Notation: Each input of $\acute{\mathbf{A}}$ has its own linear transformation matrix. Simple: $h_t = \phi(h_{t-1}) = f\left(W^{(hh)}h_{t-1}\right)$

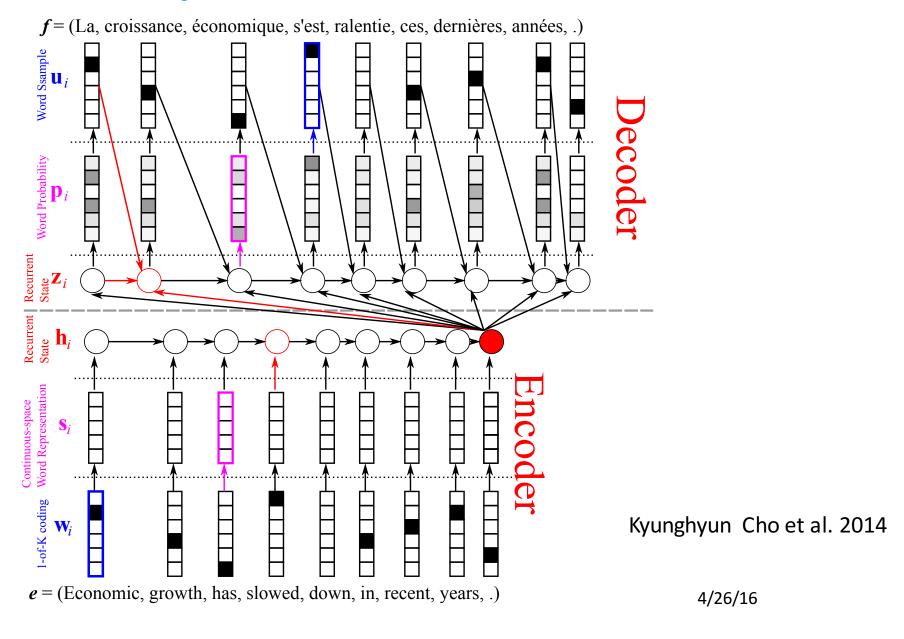
- Compute every hidden state in decoder from
 - Previous hidden state (standard)
 - Last hidden vector of encoder c=h_T
 - Previous predicted output word y_{t-1}

$$h_{D,t} = \phi_D(h_{t-1}, c, y_{t-1})$$



Cho et al. 2014

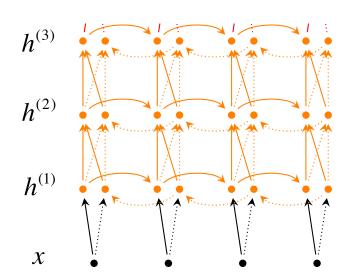
Different picture, same idea



RNN Translation Model Extensions

- 3. Train stacked/deep RNNs with multiple layers
- Potentially train bidirectional encoder

24



5. Train input sequence in reverse order for simple optimization problem: Instead of A B C \rightarrow X Y, train with C B A \rightarrow X Y

6. Main Improvement: Better Units

- More complex hidden unit computation in recurrence!
- Gated Recurrent Units (GRU)
 introduced by Cho et al. 2014 (see reading list)
- Main ideas:

25

- keep around memories to capture long distance dependencies
- allow error messages to flow at different strengths depending on the inputs

GRUs

- Standard RNN computes hidden layer at next time step directly: $h_t = f\left(W^{(hh)}h_{t-1} + W^{(hx)}x_t\right)$
- GRU first computes an update gate (another layer)
 based on current input word vector and hidden state

$$z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$$

Compute reset gate similarly but with different weights

$$r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$$

GRUs

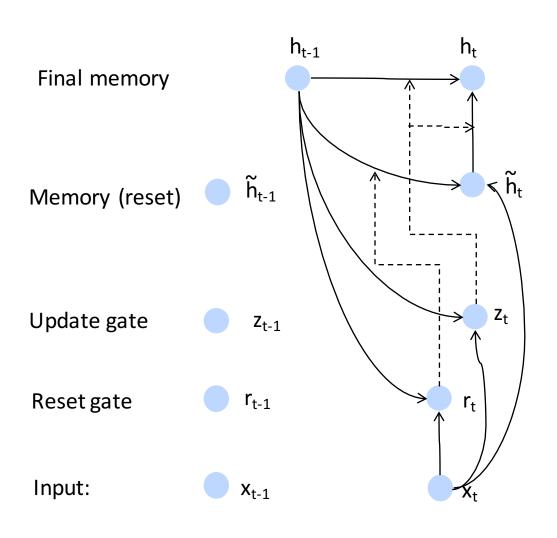
Update gate

 $z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$

Reset gate

- $r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$
- New memory content: $\tilde{h}_t = \tanh(Wx_t + r_t \circ Uh_{t-1})$ If reset gate unit is ~0, then this ignores previous memory and only stores the new word information
- Final memory at time step combines current and previous time steps: $h_t = z_t \circ h_{t-1} + (1-z_t) \circ \tilde{h}_t$

Attempt at a clean illustration



$$z_{t} = \sigma \left(W^{(z)} x_{t} + U^{(z)} h_{t-1} \right)$$

$$r_{t} = \sigma \left(W^{(r)} x_{t} + U^{(r)} h_{t-1} \right)$$

$$\tilde{h}_{t} = \tanh \left(W x_{t} + r_{t} \circ U h_{t-1} \right)$$

$$h_{t} = z_{t} \circ h_{t-1} + (1 - z_{t}) \circ \tilde{h}_{t}$$

GRU intuition

If reset is close to 0,
ignore previous hidden state
 → Allows model to drop
information that is irrelevant
in the future

$$z_{t} = \sigma \left(W^{(z)} x_{t} + U^{(z)} h_{t-1} \right)$$

$$r_{t} = \sigma \left(W^{(r)} x_{t} + U^{(r)} h_{t-1} \right)$$

$$\tilde{h}_{t} = \tanh \left(W x_{t} + r_{t} \circ U h_{t-1} \right)$$

$$h_{t} = z_{t} \circ h_{t-1} + (1 - z_{t}) \circ \tilde{h}_{t}$$

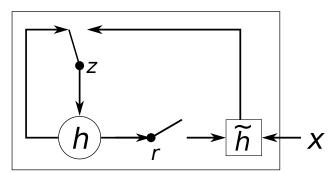
- Update gate z controls how much of past state should matter now.
 - If z close to 1, then we can copy information in that unit through many time steps! Less vanishing gradient!
- Units with short-term dependencies often have reset gates very active

GRU intuition

 Units with long term dependencies have active update gates z $z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$ $r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$ $\tilde{h}_t = \tanh \left(W x_t + r_t \circ U h_{t-1} \right)$

 $h_t = z_t \circ h_{t-1} + (1 - z_t) \circ h_t$

Illustration:



Derivative of $\frac{\partial}{\partial x_1}x_1x_2$? \rightarrow rest is same chain rule, but implement with **modularization** or automatic differentiation

Long-short-term-memories (LSTMs)

- We can make the units even more complex
- Allow each time step to modify
 - Input gate (current cell matters)
 - Forget (gate 0, forget past)
 - Output (how much cell is exposed) $o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right)$
 - New memory cell
- Final memory cell:
- Final hidden state:

$$i_t = \sigma \left(W^{(i)} x_t + U^{(i)} h_{t-1} \right)$$

$$f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right)$$

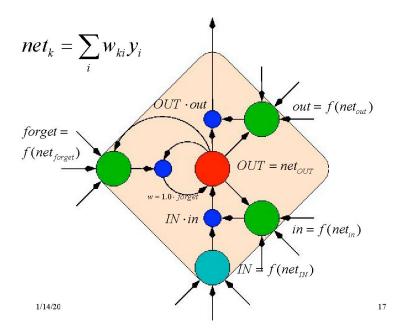
$$\mathbf{y}) \ o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right)$$

$$\tilde{c}_t = \tanh\left(W^{(c)}x_t + U^{(c)}h_{t-1}\right)$$

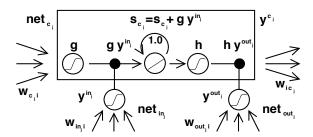
$$c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$$

$$h_t = o_t \circ \tanh(c_t)$$

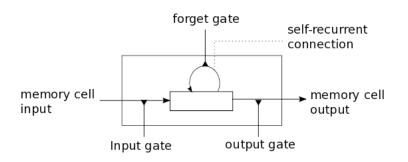
Illustrations all a bit overwhelming;)



http://people.idsia.ch/~juergen/lstm/sld017.htm



Long Short-Term Memory by Hochreiter and Schmidhuber (1997)



http://deeplearning.net/tutorial/lstm.html

Intuition: memory cells can keep information intact, unless inputs makes them forget it or overwrite it with new input.

Cell can decide to output this information or just store it

LSTMs are currently very hip!

 En vogue default model for most sequence labeling tasks

 Very powerful, especially when stacked and made even deeper (each hidden layer is already computed by a deep internal network)

Most useful if you have lots and lots of data

33

Deep LSTMs compared to traditional systems 2015

Method	test BLEU score (ntst14)		
Bahdanau et al. [2]	28.45		
Baseline System [29]	33.30		
Single forward LSTM, beam size 12	26.17		
Single reversed LSTM, beam size 12	30.59		
Ensemble of 5 reversed LSTMs, beam size 1	33.00		
Ensemble of 2 reversed LSTMs, beam size 12	33.27		
Ensemble of 5 reversed LSTMs, beam size 2	34.50		
Ensemble of 5 reversed LSTMs, beam size 12	34.81		

Table 1: The performance of the LSTM on WMT'14 English to French test set (ntst14). Note that an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of size 12.

Method	test BLEU score (ntst14)
Baseline System [29]	33.30
Cho et al. [5]	34.54
Best WMT'14 result [9]	37.0
Rescoring the baseline 1000-best with a single forward LSTM	35.61
Rescoring the baseline 1000-best with a single reversed LSTM	35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs	36.5
Oracle Rescoring of the Baseline 1000-best lists	~45

Deep LSTMs (with a lot more tweaks) today

WMT 2016 competition results from yesterday

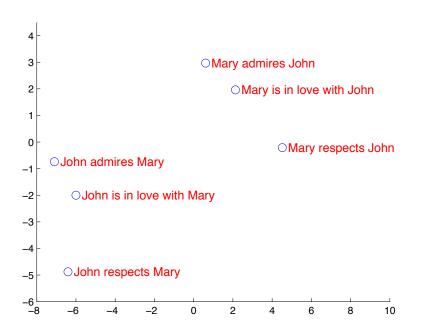
Edinburgh

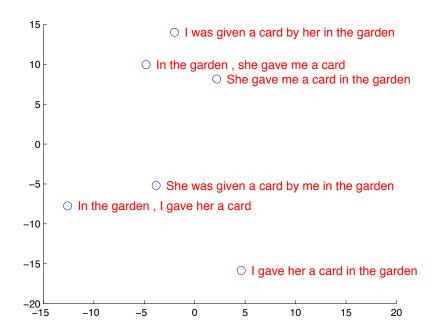
Scored Systems								
System	Submitter	System Notes	Constraint	Run Notes	<u>BLEU</u>			
uedin-nmt-ensemble (Details)	rsennrich University of Edinburgh	BPE neural MT system with monolingual training data (backtranslated). ensemble of 4, reranked with right-to-left model.	yes		34.8			
metamind-ensemble (Details)	jekbradbury Salesforce MetaMind	Neural MT system based on Luong 2015 and Sennrich 2015, using Morfessor for subword splitting, with back-translated monolingual augmentation. Ensemble of 3 checkpoints from one run plus 1 Y-LSTM (see entry).	yes		32.8			
uedin-nmt-single (Details)	rsennrich University of Edinburgh	BPE neural MT system with monolingual training data (back-translated). single model. (contrastive)	yes		32.2			
KIT (Details)	niehues <i>KIT</i>	Phrase-based MT with NMT in rescoring	yes		29.7			
uedin-pbt-wmt16-en-de (Details)	Matthias Huck University of Edinburgh	Phrase-based Moses	yes		29.1			
Moses Phrase-Based (Details)	jhu-smt Johns Hopkins University	Phrase-based model, word clusters for all model components (LM, OSM, LR, sparse features), neural network joint model, large cc LM	yes	[26-7]	29.0			
uedin-pbt-wmt16-en-de-contrastive (Details)	Matthias Huck University of	Phrase-based Moses (contrastive, 2015	yes		29.0			

system)

Deep LSTM for Machine Translation

PCA of vectors from last time step hidden layer

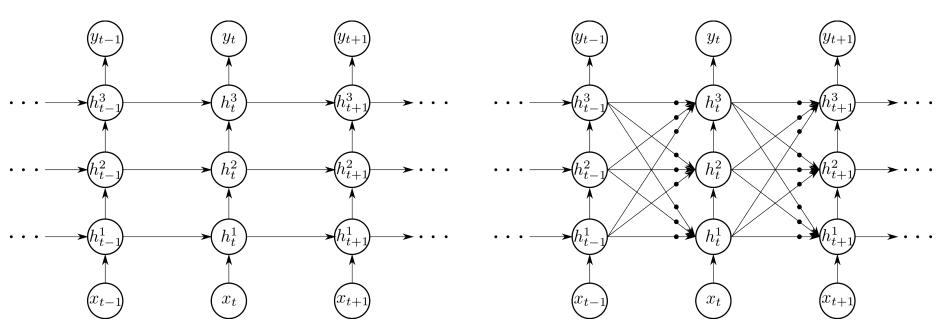




Sequence to Sequence Learning by Sutskever et al. 2014

Further Improvements: More Gates!

Gated Feedback Recurrent Neural Networks, Chung et al. 2015



(a) Conventional stacked RNN

(b) Gated Feedback RNN

Summary

- Recurrent Neural Networks are powerful
- A lot of ongoing work right now
- Gated Recurrent Units even better
- LSTMs maybe even better (jury still out)
- This was an advanced lecture

 gain intuition, encourage exploration
- Next up: Recursive Neural Networks simpler and also powerful:)