
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Knowledge extraction from medical literature using
Recurrent Neural Networks

Abhimanyu Banerjee
Department of Physics

Stanford University
manyu@stanford.edu

Abstract

The problem of extracting knowledge relationships from unstructured text has
proved a challenge for NLP. We focus on extracting relationship information be-
tween drugs targeting bacteria from medical literature. Deep learning techniques
have proved most fruitful of late in learning relationships from NLP tasks. We use
a recurrent neural network architecture (LSTM) and use this to train on labeled
sentences to decide whether a given relationship exists

1 Introduction

Extracting knowledge and summarizing knowledge from reading unstructured text remains one
of the large challenges in NLP. In this project I have focused on extracting medical relationships
from bio-medical literature. A complete repository of relationships such as gene-gene, gene-drug,
bacteria-drug will be extremely helpful for better understanding drug response[3]. The number of
known and curated gene-gene relations is growing exponentially and is cataloged in databases such
as BioGRID and ChEA. Medical literature itself is growing every year at a rapid rate and curating it
by humans is too slow, so it would be really useful if we had a tool that could automatically curate
these relationships for us. To be a little more concrete, I have focused on extracting relationships
between drugs targeting bacteria . If we are given a sentence with a drug and a bacteria, we want to
be able to say whether the drug has any action in targeting the bacteria. Deciding this is a challenge
as context matters a lot. Below are two examples to illustrate this point.

Figure 1: Drug(Levifloxacin) targets bacteria(S.maltophilia) is a a positive example

The first example is a clear sentence from which we can read and say that Levifloxacin definitely
targets the bacteria S.maltophilia . The second example is vague and there is no clear evidence of
Ipipenem acting on Escherichia Coli. We want to learn examples such as the first and pick out such
relationships(ie. Levifloxacin acts on S.maltophilia) and ignore examples such as the second as it
does not reveal anything insightful.
Deep learning approaches have been applied to several NLP tasks such as language modeling[4],
sequence to sequence learning[5] with great successes. The natural architecture for learning on
sequences is a reccurent neural network (RNN) or some variant of it. We use an LSTM architecture
to learn on our data .

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 2: Ipipenem and Escherichia Coli. It is not clear what their relationship is . A negative
example

2 Dataset and pre-processing data

Since there is not dataset of labeled sentences with drugs targeting bacteria, I had to create my own
dataset for this purpose. I used the tool called [6]ddlite developed by Chris Re’s group which is
useful in rapid prototyping and extracting relations. Ddlite was very useful in setting up the dataset.
I first downloaded a corpus of 14388 articles containing bacteria and drug mention keywords from
Pubmed central. After downloading this, I extracted all sentences that contain both a drug name
and a bacteria name from a dictionary match . I got a total of 7001 such sentences. We call such a
sentence as a ”relation mention” . The ”relation-mentions” now need to be labeled with a positive
or a negative label depending on whether they exhibit a target sort of relationship between the drug
and the bacteria or not.
To do this, we must write rules which we call ”Labeling functions ” in ddlite. Each Labeling
function is a rule that assigns the sentence a +1 label if the relation exhibited meets the condition
of a positive target relation, labels −1 if the sentence meets the condition of a negative relation and
0 if the labeling function is not conclusive and can not decide. These rules have to be designed well
to pick out good examples as we do not want to add noisy labels which will affect our final training.
We also want large ”coverage” ie. our rules should be able to give a +1 or a −1 label to a large
fraction of our data set. We do not want too many 0 labels as these are useless for training.

I have written several rules(59 of them) that do labeling and got a coverage of about 60% , ie. I
am able to label 60% of these sentences with a positive or a negative label. Some examples of
labeling functions are: If we find the words ”target”,”degrade”,”infect”,”conducive” in the sentence
between the drug and bacteria , mark these sentences with a +1. Some examples of negative labeling
functions: If the bacteria and drug are too far apart in the sentence, separated by > 20 tokens, mark
it with a −1 as it is unlikely they have any relation. Often also things like chemical elements and
nucleotides are mentioned as drugs, mark these as negative examples as well.
Finally it may happen that a sentence may have several different labels, because of different labeling
functions clashing. In this case we take a majority vote and assign a single label to the sentence.
After doing this I finally generated a computer labeled dataset of 2157 sentences. Of this 906 have
the label +1 and 1251 have the label −1 .
We hope that this dataset is good enough for training a deep learning model that would capture
language features and from that learn what a postive or a negative example would look like. I split
this dataset to 1600 for training, 300 for testing hyper-parameters and 257 for my development set.

2.1 pre training word-vectors

I created a vocabulary of word embedding trained specifically for this task on Medical literature.
I used a subset of the Medline corpus containing several thousand medical abstracts. The size of
this corpus in all was 1.5GB and I got it from the lab I work in (Russ Altman’s lab). The word
vectors were trained using Tensorflows version of word2vec with skipgram and throwing out ultra
rare tokens which occur < 5 times in the corpus. The dimension of the word embeddings is 128.
Since the word embeddings generated contain both bacteria and drugs, I first did an initial experi-
ment to see if there is any clustering of concepts ie. do well formed concepts such as a bacteria and
a drug emerge from these word embeddings and can we visualize them? I plotted the 2D PCA of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

the top 100 most frequently occuring drugs and bacteria for this purpose.

Figure 3: 2D PCA of top 100 most frequent bacteria and drugs. Bacteria are in red and drugs are in
blue

The word embedding do not cluster well on meaning. As you can see from the figure, the clusters
overlap a lot . The data-set for training word vectors is probably not large enough to have formed
these well developed concepts.

3 Approach

We use the recurrent neural network architecture framework because this is what is quite natural
when you have sequential data. RNNs are very successful in learning on large sequences and mod-
eling the sequences. We use a popular version of the RNN called as the LSTM (long short term
memory)

3.1 Model-LSTM recurrent neural networks:

The LSTM (long short term memory ) are a modified kind of recurrent neural networks. They were
introduced by Hochreiter and Schmidhuber (1997)[7] , and have been successfully used by many
people in following work . They work tremendously well on a large variety of problems, and are
now widely used. Vanilla RNN’s can learn long term dependencies in principle but do not work well
in practice. This is because they suffer from the problem of vanishing and exploding gradients. The
LSTM solves this problem elegantly by defining a cell state that is a linear combination of a new
state and the previous state. This allows it to remember information across several time steps and in
practice has much better performance. The wonderful review article by Christopher Olah explains
the concepts behind LSTM quite well [2]. The basic structure of the LSTM is shown in the picture
below in figure 4:

The state of the LSTM is referred to by the symbol Ct This is updated at every step according to the
update rules. The final hidden state ht is got from the cell state.

3.2 The LSTM update equations:

The LSTM has 3 gates , a forget gate , an input gate and an output gate. The forget gate controls
how much of the previous state we want to keep, the input gate regulates how important the current
input information is and the output gate regulates the output. It is best understood by the equations:

ft = σ(Wf .[ht−1, xt] + bf ) (1)

Here ft is the forget gate, Wf ∈ R(n∗n) and bf ∈ R(n).
Similarly we also have an input gate and an update state:

it = σ(Wi.[ht−1, xt] + bi) (2)

C̃t = Tanh(Wc[ht−1, xt] + bc) (3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 4: An unrolled LSTM recurrent neural network

Here as before Wi ∈ R(n∗n),Wc ∈ R(n∗n),bi ∈ R(n),bc ∈ R(n) The input and forget gates act to
determine how much of the old state to forget and how much of the new state to use to develop the
output state .

Ct = ft ◦ Ct−1 + it ◦ C̃t (4)

ot = σ(Wo.[ht−1, xt] + bo) (5)
ht = ot ◦ Tanh(Ct) (6)

Finally the output gate acts on the final state to produce the current hidden state. The output gate
controls what it decides is important to outputted to the hidden state. Of course Wo ∈ R(n∗n) and
bo ∈ R(n)

It is the final hidden state that we are interested in. The complicated dynamics of creating this state
allows the LSTM to solve the vanishing, exploding gradient problems and learn well over long time
steps.
We finally feed the final hidden state to a softmax layer (with two output states) and train the neural
network with the Cross Entropy cost for the Softmax layer.

4 Experiment:

We train the LSTM using the cross entropy cost of the final hidden state. I modified a version of
the LSTM code available to train MNIST [8]. Since tensorflow requires you to enter the number
of steps in an RNN from before, you need to pad the sentences to a fixed length. What this means
is that a special ’PAD’ symbol must be introduced in the embedding which is a zero vector. All
shorter sentences than the padded length must have the ’PAD’ symbol at the end to make it of the
fixed length. Larger sentences will get cut off. The average length of a sentence in my dataset was
38 tokens. The padded length is a hyper parameter that must be varied to get optimum performance.

4.1 Values of the hyper parameters used and tuned

Each word in the dictionary has a fixed length of 128 .
The dimension of the hidden state is 200 .Performance did not change with changing it to 256
Total epochs : 15 or 20
Number of steps is varied between 10 to 150. The average sentence length is 38
Learning rate : .001
Batch size : 30

I used the Adam optimizer to optimize.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

5 Results:

Since my training set is small (1800) sentences, the model overfits on the training data. The model
is quite sensitive to the length of the padded sentence used (the number of steps) . I got the best
performance for number of steps equal to 50 with a classification accuracy of 65% on the dev. set.
I have plotted the performance of the classification algorithm on the dev. set as a function of the
number of steps used in figure5.

Figure 5: Classification accuracy on the dev set as a function of the number of steps used

It is interesting that we have a peak performance near the average sentence length of my data. Very
small lengths are expected to be bad as we cut off too much information. Very long sentence lengths
get confused on the shorter sentences as they have too many trailing zeros from the padding. Due to
this they get stuck in local minima that they can’t come out of and do not have good performance. I
have also plotted the dev set accuracy as a function of number of training epochs. This turned out to
be quite instructive and we can see how the sentences which are padded to larger lengths get stuck
in local minima of the cost during training and the accuracy does not change much(unless it jumps
abruptly out of the minima)

The shorter padded sentence length of 65 shows increasing accuracy (on dev set) with training
epochs. The large padded length of 150 shows no improvement from one epoch to the next. It is
stuck in local minimas. However it jumps out of one local minima only to be stuck in another.

6 Conclusions

Our LSTM model is clearly able to learn as we have about 65% classification on the dev.set . How-
ever we are limited by our data which is computer generated so, we do not know whether it is
learning actual relationships or just fitting the rules I have defined with my labeling functions. It
will be amazing to have a good human labeled dataset for this purpose.

Acknowledgments

I really wish to thank my friend Raunaq for helping out with the project and homework. This course
would not have been as much fun without his help. I also want to thank Emily Mallory for helping
me learn ddlite and being a mentor. Thanks to Yuhao Zhang for giving me the medline data to train
word vectors and being there to discuss different deep learning models.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 6: Classification accuracy on the dev set as a function training epoch and sentence length=
65

Figure 7: Classification accuracy on the dev set as a function training epoch and sentence length=
150. Note how the accuracy randomly jumps from one local minima to another

References

[1] Wojciech Zaremba & Ilya Sutskever & Oriol Vinyals (2014) Recurrent Neural Network Regularization
arXiv:1409.2329

[2] Christopher Olah -Understanding LSTM Networks http://colah.github.io/posts/2015-08-Understanding-
LSTMs/

[3] Emily Mallory & Ce Zhang & Chris Re & Russ Altman(2015) Large-scale extraction of gene inter-
actions from full-text literature using DeepDive Bioinformatics first published online September 3, 2015
doi:10.1093/bioinformatics/btv476

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

[4]Tomas Mikolov & Martin Karafiat & Lukas Burget & Jan ”Honza” Cernocky & Sanjeev Khudanpur - Re-
current neural network based language model INTERSPEECH. Vol. 2. 2010

[5]Sutskever Ilya & Oriol Vinyals and Quoc V. Le. ”Sequence to sequence learning with neural net-
works.”Advances in neural information processing systems. 2014.

[6]DDLITE by Chris Re et. al https://github.com/HazyResearch/ddlite

[7]Hochreiter, Sepp, & Jrgen Schmidhuber. ”Long short-term memory.”Neural computation 9.8 (1997): 1735-
1780.

[8]https://github.com/aymericdamien/TensorFlow-Examples

7


	Introduction
	Dataset and pre-processing data
	pre training word-vectors

	Approach
	Model-LSTM recurrent neural networks:
	The LSTM update equations:

	Experiment:
	Values of the hyper parameters used and tuned

	Results:
	Conclusions

