
CS224D Final Report: Deep Recurrent Attention
Networks for LATEX to Source

Keegan Go
Department of Computer Science

Stanford University
Stanford, CA 94305

keegango@stanford.edu

Kenji Hata
Department of Computer Science

Stanford University
Stanford, CA 94305

khata@stanford.edu

Abstract

For our project, we wanted to explore the problem of recognizing
LATEX expressions and translating them to source using a deep neural network. Pre-
vious work involving attention models have improved sequence to sequence map-
pings and greatly helped in digit recognition. Inspired by these previous work, we
implemented an attention model to recognize simple LATEX expressions and also
tested it on a small subset of CROHME, a dataset of handwritten mathematical
expressions. We thoroughly explain our network, training procedure, hyperpa-
rameter tuning, and results. We achieve a classification accuracy of 63.4% on an
automatically generated dataset and an accuracy of XXXXXX on CROHME.

1 Introduction

LATEX documents pervade the computer science community (and many others). In this project, we
want to tackle the ability to transcribe LATEX expressions to source code. The applications of a highly
robust transcription images of LATEXto source code are numerous: for example, taking a picture of
any paper and having its source to compile and edit would be extremely useful for the research
community.

The expressions found in LATEX equations naturally have a lot of structure compared to regular text.
For instance, the expression

1

1 + 1
1+ 1

4

+
1

1 + 1
1+ 1

4

+
1

1 + 1
1+ 1

4

has a recursive structure, which a deep convolutional recurrent network could learn and generalize
it to other expressions.

Convolutional neural networks have recently seen great success and subsequently gained immense
popularity in numerous classification and recognition tasks [10]. Additionally, recurrent networks
have proven to learn sequence to sequence mappings. A combination of these two type of networks
has become extremely effective recently, especially with the addition of attention mechanisms to
further boost the efficacy of how deep networks ”see” images [1, 4, 15].

In this project, we implement a deep recurrent, convolutional network with an attention model in
order to identify LATEXtokens from simple expressions in images. We discuss our training process,
hyperparameter tuning, and the results our network produces. Overall, we find that this network
achieves an accuracy of 63.4% on 41 tokens.

1

Figure 1: An example automatically generated LATEX image.

2 Related Work

2.1 Digit, Handwriting, and Mathematical Expression Recognition

Digit recognition is a simpler classification problem of mathematical expression recognition, but
still proves to be useful. For example, the MNIST dataset [11] of handwritten digits has been used
as a benchmark for a wide variety of machine learning algorithms. A more unstructured application
of digit recognition is Google’s translation of streetview house numbers [4].

Two predominant forms of handwriting recognition: online, where the writing is recorded in real-
time [6], and offline, where the data is stored statically, such as on paper [7]. The Competition
on Recognition of Online Handwritten Mathematical Expressions (CROHME) dataset [13] pro-
vides a mapping from handwriting strokes to mathematical expressions. Work submitted to the
CROHME competition often include online recognition using stroke to shape context features with
AdaBoost [9] and a variety of foundational machine learning techniques (support vector machines,
random forests, etc.) for offline recognition [2].

Previous approaches for LATEXexpression recognition in apps like Photomath usually involve seg-
menting each individual token and then running each segmented token through a classifier. As far
as we know, there has been no sufficient work on recognizing LATEXexpressions using a deep neural
network. Thus, we believe this project is a nice extension and application of previous deep learning
techniques.

2.2 Attention Models

Many deep network models take inspiration from the way humans perform visual recognition tasks,
specifically focusing on relevant areas as they progress through sequences [3]. Attention models for
deep neural networks focus on different parts of images or sentences to help handle the recurrent or
sequential nature inherent to many tasks [5, 8]. These attention models have proven to work on a
wide variety of real-world problems, such as image captioning [15], multiple digit recognition [1],
and image generation [8]

3 Data and Model

3.1 Data

We will initially simplify our problem as much as possible by generating LATEXdocuments and taking
images of their outputted PDFs. By doing so, we can artificially generate as much data as we want
to better train our neural networks. This idea can be further trained to produce results on images of
long expressions from books or papers that one would generally not want to re-typeset.

For our dataset, we generated ten-thousand images of three to ten character expressions from a set
of 41 tokens (a to z, 0 to 9, and a few operators). To generate each expression, first choose the length
uniformly at random from the above range, and then choose characters uniformly at random from
the character set. We did not enforce any semantic constraints at this point, since we wanted our
model to learn how to map arbitrary sequences back into source. Figure 1 shows an example image
in our automatically generated dataset.

While the compiled output generally varied in height and width, we standardized our data by first
scaling all images to a height of 32 pixels and then padding the width to that of the widest image.
While we initially hoped to avoid the final padding, we found it difficult to process the data in
batches without matching the image sizes. Additionally, there exists the CROHME dataset [13],

2

Figure 2: An example CROHME image.

Figure 3: The RAM network we used to predict LATEXtokens. Multiple RAM networks can be
stacked together to predict multiple tokens.

which allows us to extend to the handwritten domain as well. Figure 2 shows an example image in
the CROHME dataset.

3.2 Model

Noticing that mathematical expression recognition, in a very simplified sense, can be represented as
a sequence of digit or character recognition, we drew inspiration from Recurrent Attention Model
(RAM) networks [12][1]. RAM networks identify salient parts of the image to look at and focus on
these parts to improve their discrimination ability.

At a high level, our model does the following:

Glimpse Network: At time step t, given a location lt, we generate a ”glimpse” xt of an image. This
glimpse mirrors the foveal vision in humans, in that the area that the glimpse focuses on is at the
highest resolution. As pixels become more distant from the glimpse, they progressively have less
resolution. We send each glimpse xt through three convolutional layers and a fully connected layer
to generate g

(x)
t . Furthermore, we send each location lt through a fully connected layer to generate

g
(l)
t .

Recurrent Network: We have two recurrent networks interwoven:

r
(1)
t = LSTM(g

(x)
t � g

(l)
t , r

(1)
t−1)

r
(2)
t = LSTM(r

(1)
t , r

(2)
t−1)

Long-Short-Term-Memory is used for the non-linearity because of their ability to learn stable, long-
range dependencies.

3

Classification Network: By sending the final r(1)n through a fully connected layer and into a soft-
max, we compute the probabilities of the next LATEX token. This token will be our predicted value.

Emission Network: Using a fully connected layer with r
(2)
t as input, we can compute the next

location the network can focus its attention lt+1.

To be explicit, we give the sizes and compositions of each component in the network.

• The Glimpse Network is composed of two sub-networks. It first maps the location (a 2-
vector) and the associated glimpse (a 8 × 8 image) into two separate 128-vector hidden
states using ReLUs. It then combines these two state vectors together into a 256-vector
hidden state using ReLU again.

• We used LSTMs with hidden layers of size 256 for our Recurrent Networks.

• Our Classification Network is a simple fully connected layer fed into a softmax loss that
takes the 256 size hidden state and maps it to predictions over the 41 character classes.

• The Emission Network consists of an affine layer fed into a tanh non-linearity to bound the
locations to between the square given by ±1 along the axes. We then scale these coordinates
by the image height and width in order to allow the algorithm to gaze at any part of the
image.

Our model was implemented in Torch (and partially in Tensorflow) on a NVIDIA GTX 970.

3.3 Training

While the model described above is powerful and has led to high performance results in a number of
areas, it introduces additional complexities in training the model. In particular, the step of indexing
the image to create the next glimpse is a non-differentiable function. This means that standard
backpropagation techniques are not sufficient to train the model.

The solution is to use reinforcement learning to train the model to select glimpse locations that lead
to good classification results. As the other attention models did, we used the REINFORCE algorithm
[14]. At a high level, this technique works by sampling around the predicted location in the forward
pass, and then treats the image is a fixed input in the backwards pass. To propagate error though the
network, the Emission Network generates it’s own “gradient” by using a reward function based on
the success of the classification.

4 Experiment and Results

4.1 Hyperparameter Tuning

After implementing the RAM network, we wanted to experiment on what parameters were the most
influential on the network’s ability to learn. Upon a few quick tests, we found that learning rate, the
reward scale for REINFORCE, and the standard deviation for the Monte Carlo sampling were among
the most influential factors. Therefore, we did a standard grid search on these hyperparameters to
find a combination of them that worked well. Figure 4 shows the results of our tuning. We found
that a learning rate of 0.05, reward scale of 10, and standard deviation of 0.5 worked well.

However, upon completing this grid search, we wanted to further test the effect of the standard
deviation of the Monte Carlo sampling, as we saw that it was somewhat sensitive. We believe this to
be the case because, in order for the network to read each token at the correct position, the glimpse
windows need to be able to quickly adjust towards the correct locations during training. Therefore,
we completed additional tuning on the standard deviation, keeping the previously stated learning rate
and reward scale. As seen in Figure 5, we found the standard deviation for Monte Carlo sampling
did not play a major role. However, we noticed if the values were too low or too high, it would
sometimes not learn at all. We believe this effect stems from the reinforcement learning ending up
not improving the emission network.

4

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20

Lo
ss

lr=0.005 reward=10.0 std=0.2
lr=0.001 reward=1.0 std=0.5
lr=0.01 reward=1.0 std=0.5
lr=0.05 reward=10.0 std=0.2
lr=0.005 reward=1.0 std=0.5
lr=0.01 reward=10.0 std=0.2
lr=0.005 reward=1.0 std=0.2
lr=0.01 reward=1.0 std=0.2
lr=0.05 reward=10.0 std=0.5
lr=0.001 reward=10.0 std=0.2
lr=0.001 reward=1.0 std=0.2
lr=0.01 reward=10.0 std=0.5
lr=0.05 reward=1.0 std=0.2
lr=0.05 reward=1.0 std=0.5
lr=0.001 reward=10.0 std=0.5
lr=0.005 reward=10.0 std=0.5

0 50 100 150 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

in
in

g
 A

cc
u
ra

cy

0 50 100 150 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
a
lid

a
ti

o
n
 A

cc
u
ra

cy

Figure 4: Hyperparameter tuning on learning rate, reward for REINFORCE, and standard deviation
for the Monte Carlo sampling using a grid search. The best tuned network (red line) seems to follow
a quick dropoff in loss and a corresponding sharp increase in accuracy.

4.2 Results

Our best model achieves a 58.6% accuracy on the training set, 66.5% accuracy on the validation set,
and 63.4% accuracy on the test set. Although these numbers seem low compared to the 90% accu-
racy achieved by similar networks on the MNIST dataset, we believe that our data is more confusing
for the network to learn because of the additional tokens within the image. These additional tokens
make it confusing for the emission network to predict a new location.

4.3 Further Experiments on CROHME

As mentioned previously, we wanted to test our network on the CROHME dataset. Although the
majority of the CROHME dataset uses very complex expressions, we chose a subset of around 500
images of easier expressions and tried to classify only 11 tokens (a few common characters and
numbers). Ultimately, using our best model, we were able to achieve a training set accuracy of
45.1%, a validation set accuracy of 32.3%, and a test set accuracy of 28.7%. This is still much better
than random, but there exists a lot of room for improvement.

5

0 50 100 150 200
Epochs

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Lo
ss

lr=0.05 reward=1.0 std=0.7
lr=0.05 reward=1.0 std=0.6
lr=0.05 reward=1.0 std=0.3
lr=0.05 reward=1.0 std=0.4
lr=0.05 reward=1.0 std=0.5

0 50 100 150 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

in
in

g
 A

cc
u
ra

cy

0 50 100 150 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
a
lid

a
ti

o
n
 A

cc
u
ra

cy

Figure 5: Hyperparameter tuning specifically on the standard deviation on the Monte Carlo sam-
pling. We found that when the values were low or high, the network more frequently does not learn
quickly.

5 Conclusion

We have implemented an attention based model for classifying LATEX expressions by character. We
trained the network while varying hyperparameters and found a configuration that trains quickly and
achieves significant results on our test set. However, as mentioned, training this type of model comes
with the complication of introducing a number of new parameters associated with the reinforcement
learning that need to be tuned in conjunction with the usual parameters. In addition to the larger
parameter space, the parallel updates for the model from reward and error terms leads to more
complicated behavior and so it is difficult to tell if the best results are being achieved.

For future work, we’d like to extend our model to making accurate predictions for arbitrary numbers
of digits and for structured expressions. The second of these two is especially interesting, but will
likely require a more recursive structure, perhaps outputting multiple subsequent glimpse locations
and then tracing each of these separately.

References

[1] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention. arXiv preprint
arXiv:1412.7755, 2014.

6

[2] K. Davila, S. Ludi, and R. Zanibbi. Using off-line features and synthetic data for on-line handwritten
math symbol recognition. In Frontiers in Handwriting Recognition (ICFHR), 2014 14th International
Conference on, pages 323–328. IEEE, 2014.

[3] R. Desimone and J. Duncan. Neural mechanisms of selective visual attention. Annual review of neuro-
science, 18(1):193–222, 1995.

[4] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. Multi-digit number recognition from street
view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082, 2013.

[5] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
[6] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel connectionist

system for unconstrained handwriting recognition. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 31(5):855–868, 2009.

[7] A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural
networks. In Advances in neural information processing systems, pages 545–552, 2009.

[8] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. Draw: A recurrent neural network for image
generation. arXiv preprint arXiv:1502.04623, 2015.

[9] L. Hu and R. Zanibbi. Segmenting handwritten math symbols using adaboost and multi-scale shape
context features. In Document Analysis and Recognition (ICDAR), 2013 12th International Conference
on, pages 1180–1184. IEEE, 2013.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[11] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits, 1998.
[12] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In Advances in Neural

Information Processing Systems, pages 2204–2212, 2014.
[13] H. Mouchere, C. Viard-Gaudin, R. Zanibbi, and U. Garain. Icfhr 2014 competition on recognition of

on-line handwritten mathematical expressions (crohme 2014). In Frontiers in Handwriting Recognition
(ICFHR), 2014 14th International Conference on, pages 791–796. IEEE, 2014.

[14] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

[15] K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show, attend and tell:
Neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044, 2015.

7

	Introduction
	Related Work
	Digit, Handwriting, and Mathematical Expression Recognition
	Attention Models

	Data and Model
	Data
	Model
	Training

	Experiment and Results
	Hyperparameter Tuning
	Results
	Further Experiments on CROHME

	Conclusion

