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Abstract

Inspired by recent advances in the field of deep learning and success that it has
gained on various problems like image captioning [8] and [15], machine transla-
tion [5], word2vec, skipthoughts [9], etc, we create a end-to-end system model
for making video content searchable, such that the search is not limited to meta
data but the actual content of the video. We transcribe video clips into text based
on its contents and then construct a pipeline that can efficiently and accurately
search for this content by an extension of the state-of-the-art skipthough vectors.
This makes the task of sifting through hours and hours of video to find what one
is looking for much faster. We present Deep-Seek: a deep learning model to get
search through video content and show that it performs well on the task defined.

1 Introduction

YouTube has 400 hours of video uploaded every min. One of the most daunting tasks that users face
on such sites is to find the interesting/relevant videos from the search results without opening and
going through each one. While video summarization seems like a nice solution to the problem, a
better one would be to make videos searchable for their content via Video Captioning, so that one
might search for the part of the video that they are interested in rather than spending time watching
on all of it.

When we summarize a video by reducing the duration of the video, we loose a lot of information.
This maybe specially bad for content where sound is as informative as the video frames. This
is because during video summarization, we skip frames making intermittent breaks in the audio
playback. However, if we make videos searchable by content, we might just be able to skip through
all the unnecessary details and watch the part that is important to us in all of its detail. In this project
we present a tool to generate a text summary of parts of videos that can then be searched for.

2 Background/Related Work

Most prior work on natural-language description of visual data has focused on static images [8, 15,
14]. The existing work on describing videos with sentences [12, 10] deals with constrained domains,
the first using context-free grammar to generate sentences and the second generating subject-verb-
object triples. T.S. Motwani in [11] explores description of activities in videos by first classifying it
into a verb class and then identifying the subjects within the frames. Our approach, instead, attempts
to understand the entire context of the video clip and generate a description of it’s content. It also
differs from all previous work since we aim to make videos retrievable based on it’s content instead
of just generating captions of the video as well as seek the exact point of the video where the scene
described by the query occurs. To the best of our knowledge, this has never been explored before.
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3 Technical approach and models : DeepSeek

We divided the problem into two tasks:- (1) The task of captioning the videos and (2) the task of
content based video retrieval. We describe both of this in this section.

Figure 1: A sequence of image constituting the video is fed into a convnet architecture. The temporal
sequence of penultimate layer feature of these images, are fed into a bidirectional LSTM. The hidden
state of these are then projected into a feature space using an affine (ReLU) layer. This feature vector
is then fed into the language model, to generate the caption for the video. (B) In the second part of
our pipeline, we feed the generated caption into a skip thoughts model which works as a sent2vec
architecture. Given a tuple (si1, si , si+1) of contiguous sentences, with si the i− th sentence of a
book, the sentence si is encoded and tries to reconstruct the previous sentence si1 and next sentence
si+1.

The Deep-Seek model consists of the following components:-

1. A state-of-the-art convolutional neural network is used to extract semantic information
from the video frames to construct a temporal sequence of features that can be collected
and fed into a language model. We feed into this network a video, frame by frame and
thus get 10 features (penultimate layer) of a trained conv-net model corresponding to the
10 frames per video in our current dataset. For the purposes of these experiments we used
a pre trained VGG Net aand ResNet. These temporal sequence of features is then fed into
a bidirectional LSTM.

x̂ij = f(xij)

Where j ∈ {1, . . . N} is one video in the dataset of N videos and i is one of the 10 frames
of video j and f is a convnet(VGG here).

2. The output of the conv net is fed into the bi directional LSTM, that takes the temporal
sequence of frame features extracted and tried to model the time domain dependency in the
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video frame features.
−→
ltj = g(x̂tj)
←−
ltj = g′(x̂T−tj )

where g and g′ are the LSTM function. Also
−̂→
ltj defines the forward context of the frame t

(where t ∈ {1, . . . 10}) and similarly,
−̂→
ltj defines the forward context of the frame t (where

t ∈ {1, . . . 10}) and T = 10.

3. The output of the bi directional LSTM is fed into a Affine layer that converts this into a
single feature vector that serves as an entry point to the Language Model.

αt
j = h(

−→
l̂t j ,
←−
l̂t j)

where h is a function of the following form

h(x1, x2) = ReLU(W1x1 +W2x2 + b)

4. The Language model is a LSTM, that takes as input the concatenation of all the αt
j for all

t ∈ {1, . . . , T}. It then generates a softmax output at each time step predicting a word,
untill a end of sequence symbol is not predicted.

5. The generated caption is then fed into a pre-trained skip thoughts model. Given a tuple
(si−1, si , si+1) of contiguous sentences, with si the i−th sentence of a book, the sentence
si is encoded and tries to reconstruct the previous sentence si−1 and next sentence si+1.
We just run the encoder part of this model, to convert our generated captions into vectors
in a semantic space. These vectors are then used for retrieval.

6. The retrieval pipeline is itself very simple. The vectors are returned by increasing order of
magnitude of euclidean distance. This can be illustrated as below:-

k = argmin
i
(vq − vi)2

here, vq is the vector corresponding to the query, vi is the vector corresponding to the i-
th clip in the dataset and k is the top retrieved clip from the dataset. In general we can
retrieve top-n videos, based on increasing order of the euclidean distance calculated from
the equation above.

4 Experiments

4.1 Data

The dataset we are using, which was collected in VideoSET [16], consists of ground-truth summaries
for two publicly available egocentric video datasets, and four TV episodes. There are 11 main classes
of videos,

1. 4 egocentric ones of 3-5 hours each recording people doing daily activities such as eating,
shopping, and cooking

2. 3 egocentric ones of a person during a day at Disneyworld Park
3. 4 TV episodes of 45 minutes each. The episodes consist of 1 from Castle, 1 from The

Mentalist, and 2 from Numb3rs.

For the purposes of our research we create 5 second clips of each of these videos with their corre-
sponding annotations. The dataset in total consists of 2,840 video clips of 5 seconds each. The frame
rate of each of these videos is around 30fps. Thus each video will consist of 150 ( = 30*5) frames
per video. Instead of handling all of these images, we subsample the frames to have only 10 equally
spaced frames per second. Thus our data gets downsampled to contain 284,000 frames(images). We
divide the dataset to have 40000 frames i.e. 4000 videos in the test set and the same number in the
validation set leaving the rest for the train set.
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4.2 Experiments

The DeepSeek project has two stages - generating captions for video clips and making the video
searchable using these captions. For the first part of the pipeline, we tested on different combinations
of state-of-the-art convolutional networks for feature extraction, with different temporal layers used
to merge the features of consecutive frames.

1. VGG16 - Affine - LM
The conv-net used for feature extraction was a pre-trained VGG-16 model [8] which was
slightly fine-tuned while training. The features extracted for the whole batch were com-
bined using an Affine (ReLU) layer and fed into the Language model.

2. VGG16 - LSTM - LM
This model was similar to the previous one except the Affine layer was replaced with a sin-
gle forward LSTM layer, to capture the forward temporal dependency on previous frames.

3. VGG16 - BiLSTM - LM In this, model, the forward LSTM was replaced with a bi-
directional LSTM to capture symmetric dependency on previous as well as following
frames.

4. ResNet200 - Affine - LM
To potentially improve the feature extraction from the frames, the VGG16 model was re-
placed with a pre-trained ResNet network with 200 layers [2]. The rest of the model was
the same as described in 1.

5. ResNet200 - LSTM - LM
Same as described in 2, except that VGG16 is replaced by the ResNet200 architecture.

6. ResNet200 - BiLSTM - LM
Same as described in 3, except that VGG16 is replaced by the ResNet200 architecture.

The second stage of the pipeline used initialized using pre-trained skipthoughts model [4]. This
was used to convert the generated captions into vectors. The motivation behind using skipthoughts
was, that the skipthoughts vector in their original paper have been shown to be capable enoough
to capture the ”meaning” of the sentences they encode. When used, without any finetuning, on
tasks like semantic analysis, paraphrase detection, etc, they work very well. So we believe that the
skipthought vectors would be able to cluster captions that are similar to each other in their meaning.
This fact can also be verfified by the cluster that we observe by visualizing the vectors as a tsne
embedding in Figure 2.

The user query, too, was converted into a vector using the same model. The similarity measurement
used to rank the results for the query was Euclidean distance.

4.3 Evaluation metrics

We evaluted the quality of the generated captions by using two separate metrics, the cross entropy
loss from the softmax layer of the language model and the BLEU score for the generated captions.

The model is also detailed in the figure 1. The entire model is trained using back propagation on the
cross entropy on the softmax output of the language model. We measure performance in the terms
of this cross entropy defined as

Lj = −
∑
k

yi logP (ŷi)

where symbols have their usual meaning. Lj is defined as the cross entropy loss for the j-th word in
the caption generated. The cross entropy loss is defined over the length of the caption as the average
of the cross entropy loss for each generated word. Thus

CE(S) =
1

N

N∑
j=1

Lj

where S = {w1, . . . wN} is the sequence of words in the caption.
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Figure 2: The t-SNE [13] embedding of the vectors generated by the skipthough model on the
captions generated for the dataset. The different colors correspond to the classes of videos described
in the Data section

Model Cross-Entropy BLEU-1 BLEU-2 BLEU-3 BLEU-4
VGG16 - Affine - LM 1.5520 60.20 41.77 24.63 16.57

ResNet200 - Affine - LM 1.3655 61.79 42.71 26.19 17.57
VGG16 - LSTM - LM 0.9822 68.79 46.26 32.81 26.7

ResNet200 - LSTM - LM 0.8932 69.65 47.60 35.56 28.70
VGG16 - BiLSTM -LM 0.7222 69.39 48.61 36.43 30.04

ResNet200 - BiLSTM - LM 0.5932 71.82 50.40 38.70 31.77
Table 1. The results in terms of of both the cross entropy loss and the BLEU scores evaluated on

the test set for the various models trained as part of the project.

Figure 3: Comparison of BLEU-1, BLEU-2, BLEU-3 and BLEU-4 scores on test data for all the
experiments
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The table above shows the results of all the experiments done. Notably, changing the convnet from
VGG16 to ResNet200 had a relatively small effect, as compared to changing the Affine projection
layer to LSTM anf BiLSTM. We suspect the reason for that is, the convolutional networks are both
very good, but the Affine model lacks the temporal dependencies that are part of the video whose
caption is being generated. The BiLISTM does the best job in capturing such dependencies, hence
outperforming both the affine layer models and the LSTM models. The results can also be visualized
as seen in Figure 3.

To evaluate the content based video retrieval task, which would test our complete pipeline ,i.e. the
caption generation and the video retrieval tasks quantitatively, we use three standard evaluation mea-
sures widely used in CBIR tasks [14], including the mean average precision (mAP), the precision
at particular ranks (P@K), and the recall at particular ranks (R@K).

Since we do not have a dataset ranked for retrieval, in order to calculate the ”ideal” ranking list, we
do the following. For each clip in the test set, we query on the original captions of the videos in
our dataset. The rank in which the videos are retrieved form the ground truth ranking list. Then we
repeat the experiment with the generated captions and compare with the ground truth list of captions
that we just created, and evaluate the metrics described above.

Model mAP P@K=1 p@K=10 R@K=1 R@K=10
VGG16 - Affine - LM 0.492 0.483 0.410 0.0301 0.0289

ResNet200 - Affine - LM 0.506 0.489 0.433 0.0329 0.0296
VGG16 - LSTM - LM 0.621 0.616 0.521 0.0441 0.0428

ResNet200 - LSTM - LM 0.634 0.621 0.549 0.0468 0.0436
VGG16 - BiLSTM -LM 0.691 0.674 0.583 0.0524 0.0507

ResNet200 - BiLSTM - LM 0.725 0.699 0.614 0.0561 0.0552
Table 2. Evaluation of entire pipeline in terms of Precision, Recall and Mean Average Precision

Suitable L2 regularization was used where ever needed. Adam optimizer was used for back prop-
agating the gradients with α = 0.8, β = 0.999, ε = 1e − 8. The weights of the convolutional net
were fixed for the first 100 iterations of the model. After which the weights of the CNN were fine
tuned using a small learning rate equal to 1e-5 where the learning rate of the rest of the model was
set to 1e-3. We used a single layered LSTM with 512 units in all its components for the language
model. The output of the VGG16 net was reduced to 512 dimensions, while the penultimate layer
feature for ResNet200 was 2048 units. Gradient was clipped for all LSTM units at 5. The dropout
probability for all the LSTM structures was 0.1 to prevent overfitting. The LSTM or biLSTM to
learn the temporal dependencies also had 512 units in all their components along with the output
dimension. Similarly, the affine layer used as input to the langauge model had an output dimension
of 512 as well.

Most of the code is written as a combination of Theano [6] and Torch [7, 3] and the best perfoming
model was trained for over 3 days on a NVidia TITAN X GPU. The initial weights to initialize
the convnet model for VGGNet -16 were obtained from BVLC Caffe Zoo [1] and ResNet200 from
facebook AI’s github resources [2].

5 Qualitative Results and Performance

To give an example of the qualitative performance of our pipeline, we ran the query ”Will says
Becket likes Castle”. As described in the model, this query was converted into a vector represen-
tation using the skip-though model and the set of vectors for the generated captions were ranked
according to their euclidean distance from the query vector. The top 5 video clips corresponding to
the closest vectors, consisted of 4 clips from the Castle episode. The 2nd among this had the original
caption ”Will asks Becket if she likes Castle”. The remaining had one or more of the 3 characters in
the scene talking to each other.

Similarly good results were observed when queries like ”I and my friends were walking in the park”,
”I cooked in the kitchen” etc. were tried.

One interesting aspect observed from our experience with the qualitative results was, that even
without the use of the audio as an input to our model, the model was still able to associate the
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Figure 4: An example run for our end to end pipeline. The part of the figure depicting the set of
vectors for generated captions is for representational purposes only.

entities with their respect videos. For instance, ”Castle” was associated with the face of ”Nathan
Fillion”, the actor who plays the character on the tv series, etc. We assume this happened because
our model was powerful enough that after repeatedly showing captions that contained the word
”Castle” for video clips that had Nathan in them, the model was able to associate the image frames
with the words.

As far as the performance in terms of time is concerned, the VGG-16 architecture takes about 425
msec to forward pass a mini-batch of 10 images (one video clip) on our NVIDIA TITAN X chip
and the ResNet200 took 687msec for the same. However, this operation is offline. For the online
retrieval operation, we just need to run the skip thoughts part of the model on the caption that is
provided for the search query, and then do a euclidean distance based ranking on our dataset (of
nearly 28000 videos). This takes about 0.133 seconds on average on the GPU an 1.5 seconds on the
CPU. Which is not bad at all. We will try improving these times in the future.
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