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Abstract

We propose a novel architecture for natural language inference. On top of a traditional recurrent
neural net with attention architecture, we add memory-based modules, residual connections, and
richer word embeddings. With these, we are able to achieve 76.6% accuracy.

1 Introduction

Recognizing whether one statement entails another statement is a critical and unsolved challenge in natural language
processing central for many industry use cases. Until recently, relevant corpuses were of insufficient size for training
neural networks to this task. This changed with the release of the Stanford Natural Language Inference (SNLI) Corpus,
which is orders of magnitude larger than other relevant corpuses available. We propose a bidirectional recurrent neural
network (RNN) with attention trained using premise and hypothesis pairs to discriminate entailment from contradiction
and neutral categorizations. Our novel additions to existing approaches include memory-based modules, residual
connections, and richer word embeddings. With these, we are able to achieve 76.6% accuracy.

2 Review of existing work

The use of a (potentially multi-layer) bi-directional RNN layer for natural language inference problems, in particular
Gated-Recurrent Unit (GRU) and Long short-term memory (LSTM) architectures, is common in literature, serving as
a simple baseline and/or first-layer for most neural network-based architectures that have been published on the SNLI
dataset (for example see the first neural network used on SNLI at [1]). In light of this, we also use this as our first
layer.

Both above and as a subcomponent of this RNN layer, a large variety of attention mechanisms have been proposed,
and the more complex attention mechanisms have also been the key ingredients to the state of the art results recently
achieved on SNLI thus far. Broadly speaking (with some exceptions), these models tend to generate separate pooled
sentence representations of the hypothesis and premise sentences using attention, and then combine the two sentences
in a set of feed-forward layers to get to a final prediction.

Attention was first introduced to SNLI by [11]. Here, the first mechanism used was vanilla attention, which used the
last output vector of the LSTM reading the hypothesis sentence, piped through an affine layer and softmax, to create a
weighted-average single fixed-vector representation of the premise sentence. The second version of attention used was
word-by-word attention, where instead of using a single distribution over all the premise LSTM outputs to generate a
pooled average, uses separate distributions for each individual word in the premise to create a pooled representation
of each word in the premise, with the representation of the final premise word being selected as the representation for
the premise sentence. This second attention model achieves 83.5% on the test set.

The current leading result [2] (with 86.3% accuracy on the test set) has two even more complex attention mechanisms.
First, it uses an extension of the LSTM which they call the ”Long Short-Term Memory-Network (LSTMN)” layer,
which enables any given hidden and cell state to be calculated with respect to not only the immediately prior time
step hidden/cell states, but also based on an attention-based pooling of all prior time step hidden/cell states. On
top of the resulting RNN output states, they also use a ”Deep Fusion Layer”, which enables a different distribution
over every hidden and cell state of a first ’source’ sentence to inform the value taken for the hidden/cell states of a
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second ’target’ sentence. Besides the attention mechanisms cited here, others have also been used, including attention
within sentences or ’inner attention’ [8], attention focused on matching alignment between words in the premise and
hypothesis, combined with LSTM to create an ’mLSTM’ [12], and more.

What unites these approaches, importantly, is that each time a round of attention is applied, it is only done once. Hence,
what all of these approaches lack, is an approach to attention in which multiple rounds of attention (and potentially
a varying number based on need) can be done over the representation of each sentence, thus allowing each round of
attention to focus more specifically on a different aspect of the target sentence outputs and piece together the results
sequentially, just as a human might piece facts together one by one (as opposed to all at once). One could imagine as
an extension to existing work the specific attention used within the RNN and above the RNN layer could be treated
as a hyperparameter in which you slotted in the attention mechanism of your choice, and then after the RNN layer,
multiple rounds of attention could be used, creating successfully more accurate/useful representations of the premise
and hypothesis sentences.

This alternative approach, which we end up implementing below, is inspired by the ’Dynamic Memory Network’ work
by [7], in which questions trigger an iterative attention process which allows the model to condition a current round
of attention on both the inputs and the result of previous iterations of attention. They found that with such an iterative
approach, this caused the attention of each iteration to be significantly more focused on individual facts as opposed
to spread out evenly over the entire set of facts (and thus not able to conclude as much). An upgraded version of this
model currently holds the state of the art on the facebook bAbi dataset [13], so we decided to try adapting this iterative
attention approach to our problem.

One thing we noted in reviewing this work is that in [7], having more attention iterations than necessary tended to
degrade performance on simpler tasks (such as for 5 iterations on sentiment analysis). This reminded us of work from
computer vision done in a recent ImageNet winning paper [4], in which it was shown that for extremely deep neural
networks (in this case on the order of 100+), it was possible for the neural net not only to overfit the training data,
but even worse start to perform more and more poorly on training error (not just validation error). This theoretically
shouldn’t be happening because extraneous layers in a deeper network could just learn to pass previous layers forward
by becoming like identity functions, but in practice, this seems very hard to do. So instead, the authors made residual
connections between layers, as they found it is easier for higher layers to learn to zero themselves out (so that no
residual is added to the existing input) than it is to learn to become like an identity function. To ward off the potential
risk of this issue harming us as well, we also took the existing iterative attention model cited above but made the links
between each iteration of attention residual.

Finally, in looking at existing SNLI results, it was clear that the winning architectures tended to use as large as
possible of vocabularies they could find with the largest word embedding (most use glove 840B 300 dimensional word
embeddings), and the current state of the art result not only uses this massive word embedding but trains on top of it,
indicating that for them overfit was not a problem even with such a large embedding (some models performing less
than current state of the art do not train the embedding). Even more astounding, rather than have an unknown token
represent the out of vocabulary words, they create new vectors for each out of vocabulary word and train them from
scratch.

Based on this, we hypothesize that if we could create an even richer word embedding than this state of the art, we could
improve our results further. Inspired by the idea of creating different word vectors for different senses of the same
word from [5], we use an external NLP toolkit called sPaCy to create a different word vector for any given vocabulary
word’s different part of speech uses. Furthermore, inspired by the idea of not just using a single monolithic unknown
token to represent each out of vocabulary word, but to actually use external resources to identify/categorize them more
finely from [10], we also use sPaCy to create different a variety of different unknown tokens based on part of speech,
entity type, dependency parse labels.

3 Approach

3.1 Data

We utilize the Stanford Natural Language Inference (SNLI) Corpus [1], a collection of 570k, the largest of its kind,
human-written English pairs of single sentences manually labeled with the labels entailment, contradiction, and neu-
tral. As the sentences are based on descriptions of image captions, and thus very life-style domain focused, they
do not require as much real-world knowledge of politics/science/etc. to judge the correct label. There are a total of
13,981,666 words with 39,865 unique words.
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An example of one sentence entailing another would be A soccer game with multiple males playing entails Some men
are playing a sport. An example of one sentence not entailing another would be An older and younger man smiling
and Two men are smiling and laughing at the cats playing on the floor.

3.2 Architecture

We implement a deep bidirectional RNN with GRU cells in order to capture context from both the left and the right in
our sequences of text with multiple layers as well as to capture long-distance dependencies in our text which could be
lost in a conventional RNN.

3.2.1 Sentence Encoding Module

First we feed the premise and hypothesis respectively through two independent deep bidirectional RNNs with GRU
cells. The bidirectionality of the network allows us to capture context from the left and right of each word in the
sequence. Each sentence is fed word-by-word through the RNN, resulting in an encoding of the entire sentence in a
single vector. We experimented with pre-initializing the words with pretrained Glove embeddings as well as randomly
initializing the words from a normal distribution. In both cases, we updated the embeddings as part of training.

3.2.2 Memory Module

Having fed our premise word-by-word into our deep bidirectional GRU, we then compute multiple rounds of attention
in the style of Dynamic Memory Networks. During each iteration, the attention mechanism attends over the word-
by-word outputs from the top GRU layers while taking into consideration the sentence encoding of the hypothesis.
We utilize the ’general global’ form of attention proposed by [9]. This global attentional model considers all hidden
states of the premise when deriving the context vector. First, we derive an alignment vector ap, whose size equals the
number of time steps on the premise side, by comparing the resulting hypothesis state hh with each premise hidden
state h̄p.

ap = align(hh, h̄p) =
exp(score(hT

hWah̄p))∑
p′ exp(score(hh, h̄p′))

(1)

While Luong et al. explored various options for the score equation, we utilize the “general” global attention formula-
tion where Wa is a learnable parameter:

score(hh, h̄p) = hT
hWah̄p (2)

We then compute the context vector as a weighted average over all premise hidden states using our alignment vector
by computing the dot product between all hidden premise states and their corresponding alignment vector:

cp = hpa
T (3)

When computing multiple rounds of attention, or memory “hops”, for hop k (and where we originally started with
the hypothesis vector as m0), we first take the context vector created for that given hop’s round of attention (which
attends over the premise given the latest round of memory) ck, concatenate it with an existing memory vector from
the prior hop mk−1, and feed it through an affine layer (with a different set of weights for each hop) with a ReLU
nonlinearity to produce a new memory based on the combined representation of the premise and earlier memory, mk.
The equations describing this are below

m0 = hh (4)
ak = align(mk−1, h̄p) (5)

ck = hpa
T
k (6)

mk = ReLU([ck;mk−1]Wk + bk) (7)

When utilizing residual connections (which we use in some architectures and not others), rather than replacing the
memory vector at each hop, we add the latest memory vector calculation as a residual rk to the prior hop step’s
memory vector calculation, thus creating a skip connection similar to that found in [4].
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rk = ReLU([ck;mk−1]Wk + bk) (8)

mk = mk−1 + rk (9)

Note that in the above equations, we could essentially have slotted in whatever attention we chose to create our ck
vector for each hop, but due to limited resources, we stuck with the exact attention formulation above. We also
experimented with creating a skip connection by updating our hypothesis sentence vector representation with our
attended premise with each hop, but this did not perform as well as the above residual formulation.

ht+1
h = c + ht

h (10)

3.2.3 Prediction Module

Having produced a final representation of the premise with attention, memory, and residual connections, we then
concatenate this with our hypothesis sentence encoding, and feed this combined representation of our premise and
hypothesis through affine layers leading to a softmax cross-entropy loss over our gold standard labels.

3.3 Enriched Vocabulary

In addition to utilizing pretrained Glove word embeddings, we seek to create even richer word embeddings leveraging
the spaCy toolkit to differentiate tokens found in our Glove vocabulary by part of speech and further differentiate
unknown tokens not found in our Glove vocabulary by part of speech, entity type, and its position in its dependency
tree. In doing so, we distinguish our known words which may have many senses with different parts of speech, such
as in the case of river banks, noun, versus a plane that banks, verb, as it lands. We distinguish our unknown tokens,
previously lumped together into one umbrella category of unknowns, by their unique attributes, resulting in a set of
rich unknown tokens.

4 Experiments and Results

We evaluate the effectiveness of our model using standard accuracy, precision/recall/F1 measures on the SNLI data.
The SNLI corpus is split into a training set of 550,152 sentence pairs, a development set of 10,000 sentence pairs, and
a test set of 10,000 sentence pairs. We first removed all sentence pairs with inconclusive labels of “-”, i.e. neither
entailment nor contradiction nor neutral due to a non-majority vote from the annotators, resulting in a training set of
549,367 sentence pairs, a development set of 9,842 sentence pairs, and a test set of 9,824 sentence pairs. We utilize
the development set to select our hyperparameters and only ran our models once on the test set after training all of our
models at least 10 epochs and setting our hyperparameter choices in stone.

4.1 Training Details

We train using the SNLI training set and shuffle mini-batches as we proceed where our mini-batches size is 128. Since
our data includes variable-length sentences, we utilize a padding token “<PAD>” to pad each of our sentences to
the maximum sentence length to expedite the matrix multiplications in our neural network. Our deep bidirectional
GRU has two or three layers with 300-dimensional embeddings, resulting in a 600-dimensional embeddings as we
concatenate the forward and backward states.

We initialize our parameters using Xavier weight initialization [3]. We experiment with initializing with 300-
dimensional Glove 840B word vectors as well as randomly initializing 300-dimensional word vectors with a random
normal distribution.

We train for at least 10 epochs using the Adam optimizer [6] with default parameters. Additionally, we utilize L2 loss
on the parameters of our affine layers as well as dropout with probability 0.2 − 0.3 to the inputs and outputs of our
bi-GRU layers as well as the outputs of our affine layers. We performed a hyperparameter search using the following
learning rates [1e − 2, 1e − 3, 3e − 4, 1e − 4] and following l2 regularization [0.0, 1e − 4, 3e − 4, 1e − 3]. Our final
affine layers leading up to the softmax have a reduced dimensionality of 100.

Our code is implemented in Tensorflow. When running on a g2.2x GPU device on AWS, it takes about 3 hours to
iterate over the entire training data once.
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4.2 Two-way Classification

We first experimented with converting the original three-way classification task of predicting [entailment, contra-
diction, neutral] to a two-way classification task of predicting [entailment, not entailment] by merging together the
contradiction and neutral classes under one umbrella of not entailment.

4.2.1 Baselines

We first implemented the baselines described in Bowman et al. [1] including logistic regression based on a set of six
unlexicalized and lexicalized features. The features included BLEU score, length difference between hypothesis and
premise, word overlap, unigram and bigram indicators, cross-unigrams, and cross-bigrams. Similarly as described in
the paper, we achieved an increasing accuracy as we built up to using all six features. The resulting F1 scores on the
dev set and test set are shown in Table 1.

System Dev(F1) Test(F1)
Unlexicalized 0.666 0.667
Unigrams only 0.690 0.696
Lexicalized 0.695 0.695

Table 1: F1 Scores of Lexicalized Classifier on Dev and Test sets

4.2.2 Sentence Encoding Models

Next we moved onto sentence encoding models also described in Bowman et al. with two adjustments: we im-
plemented global general attention from Luong et al. as well as used a GRU instead of an LSTM. Otherwise, our
architecture was similar to that used in Bowman et al.: our deep biGRU encodes both the premise and hypothesis
separately, then we concatenate both representations and feed forward the combined representation through 3 affine
layers leading up to a softmax layer. For both of these models, we trained word embeddings from scratch.

System Train (% acc) Dev (% acc)
Attention + 2-layer biGRU 82.785 80.3886
Attention + 2-layer biGRU + 2 hops 85.612 84.034

Table 2: Experimental results on two-way classification task.

As expected, this deeper model achieved higher accuracy than our baseline classifiers with hand-crafted features which
achieved around 70% accuracy on average. We saw that when we added two rounds of attention, our model’s accuracy
increased on both the train and development set, showing that even adding one additional round of attention over the
premise with respect to the hypothesis allowed our model a gain in accuracy.

4.3 Three-way Classification

Encouraged by the positive results of adding multiple rounds of attention, we then moved onto the original three-way
classification problem of distinguishing between [entailment, contradiction, neutral].

For our three-way experiments, we utilized Glove 840B 300d to pre-initialize our word embeddings and trained these
embeddings throughout training. Our bidirectional GRU has two layers, and we used a consistent learning rate of
1e − 4 and l2 regularization on affine layers of 1e − 4. For each of our models, we utilized general global attention.
We created our enriched vocabulary using Glove 6B 300d pretrained vectors.

For most of our models, the gaps between the train, development, and test accuracies are quite small, suggesting that
our model is able to learn from the train set and generalize well over the unseen development set without overfitting the
train set. It is troubling that for the two models using hypothesis residual connections of always adding the hypothesis
representation to our latest attended premise vector, the test accuracy is significantly lower than that of the train and
development set, suggesting that those particular models were unable to generalize to the unseen test set.

Based on a typical confusion matrix (where the values are percentage of total samples) like the one below for the final
model with 3 hops, we see that the neutral class is relatively similarly likely to be confused with both the entailment
and contradiction classees. And as expected, the model is more likely to incorrectly predict that a sample is labeled
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System Train (% acc) Dev (% acc) Test (% acc)
300d biGRU RNN 77.4757 75.87 75.49
300d biGRU RNN + 3 hops 78.006 76.367 76.038
300d biGRU RNN + 3 hops + hypothesis residual 77.318 75.9868 58.85
300d biGRU RNN + 5 hops + hypothesis residual + enriched 75.56 75.678 60.65995
300d biGRU RNN + 3 hops + memory residual + enriched 77.34 76.7 76.63

Table 3: Experimental results on three-way classification task.

Figure 1: Loss and accuracy curves on the development set. The numbers in the legend correspond to the experiments
listed in order in Table 3.

entailment when it is actually neutral than to incorrectly predict that the sample is labeled entailment when it is actually
contradicting, with a similar relationship holding when looking at incorrect predictions for contradiction.

Confusion matrix (% of total) Predict Entail Predict Neutral Predict Contradict
Labeled Entail 30% 3% 2%
Labeled Neutral 6% 23% 4%
Labeled Contradict 4% 4% 24%

Table 4: Confusion matrix for our best-performing model on the test set.

From the F1 metrics table for the final model with 3 hops below, we see that there is not a significant divergence
between total precision/recall/F1 scores nor average F1 scores for the 3 classes. However, we do see that the model
is much more likely to be precise about its contradictions, and much better at recall on its entailment labels, with the
final outcome being that its F1 score for entailment is slightly higher.

Classification metrics Precision Recall F1
Entail .74 .86 .79
Neutral .75 .69 .72
Contradict .82 .74 .78
Total .77 .77 .77

Table 5: Precision, Recall, and F1 scores for our best-performing model on the test set.

Finally, when looking at some examples of what our best model gets wrong, in some cases, it just hasn’t learned what
certain words mean or that certain pairs of words are analogous/contradicting. However, in a surprising number of
cases, the problem itself requires a broader intuitive sense of the world not derivable from the sentences themselves
which our model also does not have (as in the example of the girls with dresses).
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• Premise: Group of young adults posing for picture near spanish - language sign .
Hypothesis: The people are tourists .
Prediction: contradiction
Gold Label: entailment

• Premise: Two dirt bike riders , one wearing green and the wearing blue and white , are jumping a hill .
Hypothesis: Two guys are driving buses
Prediction: entailment
Gold Label: neutral

• Premise: A lady is helping another woman work in a silver compartment , which is most likely related to
nurse - work .
Hypothesis: Two woman are trying to finish orders from a doctor
Prediction: neutral
Gold Label: contradiction

• Premise: People are on an escalator waiting to get to their destination while looking outside of the glass that
makes up the wall .
Hypothesis: People are riding on the escalator .
Prediction: contradiction
Gold Label: neutral

• Premise: Girls dressed in red stand in a line .
Hypothesis: It is a special day .
Prediction: contradiction
Gold Label: entailment

4.4 Hops

Looking closer at our attend and hop mechanism with our model initialized with Glove vectors with 3 rounds of
global attention, we can see that the way our model performs attention, it is nearly akin to a human reading left-
to-right. Furthermore, while during the first round of attention, our “<PAD>” characters receive some amount of
attention weight, during the second and third round, our model learns to zero these out, seemingly recognizing that the
“<PAD>” characters are irrelevant to the verdict of [entailment, neutral, contradiction].

Looking at a specific example, we have the following premise and hypothesis:

Premise: Woman with four children with <unk> faces outside .
Hypothesis: Kids have their faces <unk> like animals .

First as we look at the alignment vector of weights, the vector of scores corresponding to the premise vector which
we compute in comparison with the hypothesis vector. As we proceed from hop to hop, the alignment weights shift
in magnitude from left to right, as if reading left to right. In the first hop, we mainly focus on Woman, the second hop
children and outside, and the third hop faces and outside.

Figure 2: Alignment weights (y-axis) over the premise (x-axis) of Woman with four children with <unk> faces outside,
hops increasing from left to right from one to three.

Upon examination of the complete alignment vector including the padded characters, we see that in the first hop,
the padded characters, placed before the the actual premise text, receive some attention from the alignment scores.
However, as we move to more hops, we begin to ignore the padded characters and give zero alignment weights to
them, hopefully indicating that our model learns that padded characters are not essential to our final objective.
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Figure 3: Alignment weights (y-axis) over the premise (x-axis) of Woman with four children with <unk> faces outside
including padding characters placed in the beginning of the sentence, hops increasing from left to right from one to
three.

5 Conclusion

With our limited time and resources, we never got to test out the full barrage of things we wanted to test. We even had
to end our existing experiments early because we ran out of time/money (our best model was actually continuing to
improve on dev loss/accuracy when we stopped it). We were hoping to begin with just general attention and hops, but
move on quickly to testing out richer types of attention in the hops, and potentially even different types of attention
in each hop. The initial bi-GRU layer as well was only a baseline, which in the future we’d like to replace with
richer RNN structures. In the future, we would hope to be able to try out (with more financial support) these other
experiments we never got around to.
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