
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Improving Paragraph2Vec

Seokho Hong
seokho@stanford.edu

Abstract

Paragraph vectors were proposed as a powerful unsupervised method of learning
representations of arbitrary lengths of text. Although paragraph vectors had the
advantage of being versatile, being unsupervised and unconstrained by lengths of
text, the concept has not been further developed since its first publication. We
propose two extensions upon the initial formulation of the paragraph vector, and
test its performance on two separate semantic-based tasks. Although the results
are limited by the fact that our attempt to reproduce the original paragraph vectors
was not successful, we can still show that the extended models outperform the
original paragraph vectors.

1 Introduction

The Paragraph Vector (Le & Mikolov 2014) was proposed with the objective of unsupervised
semantic learning of arbitrary lengths of texts. While the PV-DM and PV-DBOW models proposed
perform very well, their formulations leave room for improvement. In particular, the performance
differences between PV-DM and PV-DBOW suggest that improvements to PV-DM could yield be
significant. Also, the paper finds that PV-DM and PV-DBOW vectors concatenated achieve the
best performance. Even if different training methods do not necessarily produce better vectors,
concatenating them with the original paragraph vectors may offer better results than the PV-DM
and PV-DBOW concatenated alone.

The main mathematical limitation of the PV-DM and PV-DBOW models is that they do not
allow the paragraph vector to interact in complex, non-linear ways with the word vectors. While
this design is not entirely unjustified, since different sections of text do not radically change the
distribution and sequence of English words, there is nonetheless a limitation on the extent to which
a paragraph vector can assist in the word-prediction task the paragraph vector uses.

We propose two different formulations of training unsupervised paragraph vectors, which we will
call the hidden layer model and the tensor model. While both models offer improvements upon
the original paragraph models, we cannot make definitive conclusions because we were unable to
replicate the same level of performance reported in (Le & Mikolov 2014).

2 Background

Recent works have proposed various deep methods for learning the semantics of sentences.
Recursive neural networks with various substructures (Socher et al. 2013), (Tai et al. 2015)
and convolutional neural networks (Kalchbrenner et al. 2014), offer excellent performance that
approximately matches or exceeds that of paragraph vectors across different tasks. These models,
however, tend to be far more complex and deeper than the paragraph vector method and therefore
take significantly longer to train. They also have other limitations that could potentially limit their
range of applications. Recursive models work only for sentences and need a parser, which is not

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

only an extra requirement, but also a source of errors given that parsers are imperfect. Convolutional
neural networks as suggested in (Kalchbrenner et al. 2014) do not need a parser, but remain untested
for longer pieces of text. The max-pooling layer the paper proposes appears as though it will be less
effective as the text gets much longer.

The paragraph vector has the advantage of simplicity and versatility. Perhaps it is a bit too simple.
The models suggested here were inspired by the recent gains from the increasingly complex models.
It does not appear unreasonable to train modestly more complex models along the lines of the
paragraph vector framework if it will result in performance gains.

3 Approach

Paragraph Vector Framework

The paragraph vector framework is the general approach to training unsupervised paragraph vectors,
and is common to the models discussed here as well as the original PV-DM. The framework is a
word prediction task. Given a set of words w1, w2, · · · , wn, the model trains by predicting one of
the words’ vector, wj given the other n−1 words’ vectors. The model also takes a paragraph vector
pi where i identifies which body of text w1, w2, · · · , wn come from.

The original authors proposed both hierarchical softmax and negative sampling as a replacement
for the traditional but expensive softmax for the objective function, but we will use only negative
sampling here. The cost function is therefore:

log(σ(r · vwj ))−
∑
i

log(σ(r · vwi)) (1)

Where r is the predicted vector, wi is the vector of a random word, for which there are k random
words. For the models trained here, k is fixed at 10.

The training is done via backpropagation through structure using Adagrad.

In training, both the word vectors and paragraph vectors are initialized randomly with values in the
range of −0.01 to 0.01.

Hidden Layer Model

The original PV-DM model has the following equation for r:

r = σ(W · [c; pi]) (2)
(3)

where c is the concatenation of the input word vectors for the prediction task.

The hidden layer model we propose simply adds another layer between r and the two input vectors.

z = σ(W · [c; pi]) (4)
r = σ(U · z) (5)

(6)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

While simple, it allows the components of pi and c to interact in more complex ways. The original
equation for r allows only a single non-linear transformation of a linear function of pi and c.

Tensor Model

To allow even more interaction between the components of pi and c, we propose the following:

r = σ(c · T · pi +W · [c; pi]) (7)
(8)

where T is a tensor.

3.1 Training

Given a collection of text that can be divided into n documents, or paragraphs, each paragraph is
assigned a vector. Training involves sliding the window of context words across each word of each
paragraph, for every paragraph. At each data point, the input is the window of context words, and
the paragraph vector corresponding to the origin of the words, and the target output is a particular
word within or adjacent to the context words (depending on the hyper parameters). The target
output is obviously not given as input. At either end of the paragraph, a special ”NULL” word is
applied as needed to fill the necessary window space. The ”NULL” word is trained like every other
word.

Backpropagation is used to train both the paragraph vectors and the word vectors simultaneously.

3.2 Testing

Testing involves running gradient descent to train new paragraph vectors for each new paragraph.
At test time, all parameters of the model are frozen, including the word vectors, and the backpropa-
gation is only applied to the paragraph vectors.

4 Experiments

We tested the two new models on two fairly standard tasks, one on which other models have been
benchmarked: sentiment analysis and semantic textual similarity.

4.1 Sentiment Analysis - Stanford Sentiment Treebank

Each phrase in the treebank was treated as a separate paragraph, and training and testing was done ac-
cording to the dataset’s specifications. In an attempt to reproduce the results from (Le and Mikolov,
2014), we tried to match the hyperparameters as closely as possible.

4.1.1 Hyperparameters for PV-DM

Word vector dimensions: 100; paragraph vector dimension: 400; context window size: 7 words,
predict 8th; trained using Adagrad with 0.01 learning rate, minibatches of size 300, L2 regularization
of 1e-4. Trained for approximately 10 hours.

4.1.2 Hyperparameters for Hidden Layer Model

Word vector dimensions: 100; paragraph vector dimension: 400; context window size: 7 words,
predict 8th; trained using Adagrad with 0.01 learning rate, minibatches of size 300, L2 regularization
of 1e-4. Trained for approximately 16 hours.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

4.1.3 Hyperparameters for Tensor Model

Word vector dimensions: 100; paragraph vector dimension: 200; context window size: 7 words, pre-
dict 8th; trained using Adagrad with 0.005 learning rate, minibatches of size 300, L2 regularization
of 1e-3. Trained for approximately 48 hours.

The tensor model training becomes very expensive with large word or paragraph vectors so the
paragraph vector dimensionality was reduced.

Final Classification

After pre-training the paragraph vectors (both for training and testing), a random forest classifier
was used to predict the final sentiment label for each paragraph. On the fine-grained task, each
paragraph was classified in categories from 1 to 5, where the original sentiment is scaled up from
0.0 to 1.0. On the binary task, each paragraph rated in categories 2 and 4 were used. We used the
random forest classifier from the sci-kit learn package, with 100 trees as the only modification from
the default hyperparameters.

Table 1: SST Results
Method Fine-Grained Binary
PV-DM 41.6 81.2
PV-Hidden 42.7 82.2
PV-Tensor 44.1 84.3
PV-DM (Le and Mikolov, 2014) 48.7 87.8

5 Attempted Optimization

We made many attempts to fully reproduce the results from (Le and Mikolov, 2014). The only major
difference is that we reduced the word vector dimensionality to 100 from 400, but this reduction
was necessary to allow the model to train in a reasonable amount of time. Training a model with
200 dimensions did improve the results, but not enough to suggest that the reduction from 400 is
responsible for the disparity in results.

Training duration was determined by convergence on the development set (10% randomly sampled
from the training set). If there was no improvement over 10 epochs, or passes through the entire
training set, then the training was halted.

Dropping out for the Hidden Layer model (p = 0.5 on W) and Tensor model (p = 0.2 on T) was
used.

5.1 Semantic Textual Similarity - SemEval 2014 Task 1

While (Le and Mikolov, 2014) did not benchmark their PV-DM on this task, many other papers
benchmark their neural networks on this dataset, suggesting that the dataset is a reliable one.

The dataset here is the SICK dataset, 10000 pairs of English sentences, each labeled with a semantic
similarity score from 1 to 5. There is a Train, Test, and Trial division of the dataset, and each were
used respectively for training, testing, and validating the models.

5.1.1 Hyperparameters for PV-DM

Word vector dimensions: 200; paragraph vector dimension: 400; context window size: 9 words,
predict 10th; trained using Adagrad with 0.01 learning rate, minibatches of size 300, L2 regulariza-
tion of 1e-4. Trained for approximately 6 hours.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

5.1.2 Hyperparameters for Hidden Layer Model

Word vector dimensions: 200; paragraph vector dimension: 400; context window size: 9 words,
predict 10th; trained using Adagrad with 0.01 learning rate, minibatches of size 300, L2 regulariza-
tion of 1e-4. Trained for approximately 10 hours.

5.1.3 Hyperparameters for Tensor Model

Word vector dimensions: 200; paragraph vector dimension: 200; context window size: 9 words,
predict 10th; trained using Adagrad with 0.005 learning rate, minibatches of size 300, L2 regular-
ization of 1e-3. Trained for approximately 26 hours.

Final Classification

After pre-training the paragraph vectors (both for training and testing), a random forest regressor
was used to predict the final sentiment label for each paragraph. We used the random forest
regressor from the sci-kit learn package, with 100 trees as the only modification from the default
hyperparameters.

Table 2: Semantic Textual Similarity Results
Method MSE
Mean Vectors (Tai et al, 2015) 0.455
LSTM (Tai et al, 2015) 0.281
PV-DM 0.392
PV-Hidden 0.388
PV-Tensor 0.365

The Mean vectors baseline in (Tai et al, 2015) computes a semantic relatedness score from the
average of the word vectors of the words in the sentence. While the LSTM is not the focus of the
paper, it is one of the most effective models for the task, and puts the paragraph vector models in
perspective, at least our implementations.

6 Attempted Optimization

Since this example used the same implementation as the one used for the Stanford Sentiment
Treebank, no doubt there are some flaws holding back the scores here.

The SICK dataset is smaller than the previous one, which allowed slightly larger models to be
trained in a reasonable time.

Training duration was determined by convergence on the development set, as specified in the
dataset. If there was no improvement over 10 epochs, or passes through the entire training set, then
the training was halted.

Dropping out for the Hidden Layer model (p = 0.5 on W) and Tensor model (p = 0.2 on T) was
used.

7 Conclusions

Despite the subpar results on the PV-DM implementation, it is safe to say that additional hidden
layer and the tensor models improve upon the original PV-DM formulation. The hidden layer model

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

probably is not worth the additional training time required for the slight performance gains. The
tensor model is much better, but it takes even longer to converge.

The performance of the original PV-DM showed that modeling the distribution and ordering of a
paragraph’s words, is an effective method of modeling the semantics of a sentence or any piece
of text. The performance of the hidden layer and tensor models shows that there is room for
improvement by allowing the paragraph vector to learn a more complex function for how the
paragraph influences the distribution of words.

Regarding direct improvement of the model, perhaps a deeper, more complex model would further
improve the performance of paragraph vectors, but at that point it would no longer be the fairly
simple model that trains quickly compared to other deep models.

For improving performance on particular tasks such as sentiment analysis, models that train
directly supervised representations of text are outperforming the unsupervised paragraph vector. It
intuitively seems obvious that deep methods that optimize paragraph representations for a particular
task will outperform a shallow classifier on an unsupervised paragraph representation. It is also not
possible to fine tune the unsupervised paragraph vectors on a specific task unless all the paragraphs
are available during training time, which does not prove generalization. Thus improving the
paragraph vector is probably not the best method for attempting to improve upon state of the art
performance on separate tasks.

References

[1] Kalchbrenner, Nel, Edward Grefenstette, and Phil Blunsom. 2014. A Convolutional Neural Network for
Modelling Sentences. ACL14

[2] Le, Quoc V and Tomas Mikolov. 2014. Dis- tributed representations of sentences and doc- uments.arXiv
preprint arXiv

[3] Tai, Kai Sheng, Richard Socher, Christopher D. Manning 2015. Improved Semantic Representations From
Tree-Structured Long Short-Term Memory Networks uments.arXiv preprint arXiv

[4] Socher, Richard, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng
and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
uments.EMNLP 2013

6


	Introduction
	Background
	Approach
	Training
	Testing

	Experiments
	Sentiment Analysis - Stanford Sentiment Treebank
	Hyperparameters for PV-DM
	Hyperparameters for Hidden Layer Model
	Hyperparameters for Tensor Model


	Attempted Optimization
	Semantic Textual Similarity - SemEval 2014 Task 1
	Hyperparameters for PV-DM
	Hyperparameters for Hidden Layer Model
	Hyperparameters for Tensor Model


	Attempted Optimization
	Conclusions

