Improved Learning through Augmenting the Loss

Hakan Inan Khashayar Khosravi
inanh@stanford.edu khosravi@stanford.edu

Abstract

We present two improvements to the well-known Recurrent Neural Network Lan-
guage Models(RNNLM). First, we use the word embedding matrix to project the
RNN output onto the output space and already achieve a large reduction in the
number of free parameters while still improving performance. Second, instead of
merely minimizing the standard cross entropy loss between the prediction distri-
bution and the ~one-hot” target distribution, we minimize an additional loss term
which takes into account the inherent metric similarity between the target word
and other words. We show with experiments on the Penn Treebank Dataset that
our proposed model (1) achieves significantly lower average word perplexity than
previous models with the same network size and (2) achieves the new state of the
art by using much fewer parameters than used in the previous best work.

1 Background & Introduction

Language Modeling, which is the task of determining the probability that a sequence of words occur
in a sentence, is an important task in Natural Language Processing(NLP). Its scope includes a large
variety of tasks such as speech recognition, machine translation, part of speech tagging, and spelling
correction [[1]. Old statistical approaches for addressing this problem were based on n-grams and
their associated properties. Although these methods seemed to work reasonably well, they needed
a larger value of n in order to capture a better model for the language, and they needed a number
of parameters exponential in the size of the vocabulary [2]. Researchers have proposed methods to
improve these models [[L]; nonetheless, they are still difficult to implement in practice.

Recently, with the advances in neural network research and the increased availability of faster com-
puters, neural networks have started to replace the old methods for capturing the language structure.
Recurrent Neural Networks(RNN) were first proposed in [3]] for addressing the language modelling
task and attained a reasonably satisfactory performance. The follow-up work [4] improved the result
by applying back-propagation in addition to the existing forward-propagation.

In [5)], Zaremba et. al. used Long Short-Term Memory(LSTM) which were fist introduced in [6]],
as the building block of their recurrent neural network for language modelling. Furthermore, the
authors showed that appropriat application of dropout may avoid overfitting and lead to a better and
more generalizable model. The authors were further able to achieve the state of the art for language
modeling on the Penn Dataset Treebank corpus[7]. In particular, by training a two-layer LSTM
Recurrent Neural Network with 1500 hidden states and appropriate dropout, they could reduce the
test perplexity to 78.4 for a single model.

However, Recurrent Neural Network Language Models need big models for proper training (2 RNN
layers with 1500 hidden units in each in [3]]). In addition, their performance rely on training two very
large matrices, one for word embeddings and one for output projection, both of which essentially
capture the same thing: projection from token space to word vector space and vice versa. In this
paper we explain how imposing this structure may help us to achieve a much better accuracy even
on smaller networks. We also propose a novel method for augmenting the loss function with ad
additional term which utilizes the similarity between words captured in word embeddings.

In the remainder of the paper, we proceed as follows. In Section 2, we introduce our notation
and give detailed explanation of the standard RNNLM. In Section 3, we introduce our method and
explain in detail the proposed model mechanism. In Section 4, we validate our model by running
experiments on the Penn Treebank corpus [[7] and show that it achieves the new state of the art for
this dataset. In Section 5, we discuss some of the future directions and we present our conclusions
in Section 6.

The code to replicate the results shown in this paper can be found in https://github.com/
inanhkn/informed-rnnlm

2 Problem Statement

In language modeling, the task is to build a model which can predict the next word in a sentence
based on all previous words.

Let V' denote our vocabulary and N be the number of samples (words) that we have. Let u; and
y: be the |V | dimensional one-hot input and target word tokens at time ¢, respectively. In language
modeling, we typically have y; = u;1, since at each time the target is the next word of the sentence.

Figure[I]shows the structure of a standard RNNLM. The blocks labeled f are the hidden units of the
RNN, and they can be Gated Recurrent Units (GRU) [8}19], LSTMs, or even stacked LSTMs. We
shall denote the predictor part of the model (i.e. part which outputs §'s) with M(L, f,U,b). The
following equations describe the model mathematically:

x; = Luy (Embedding) (D
[he, mi]) = [z, mp—1) (Recurrent Neural Network) 2)
2z =Uhs+0b (Output Projection) 3)
Uii = exp (21.1) (Softmax Layer) 4)

. JCT)
SV exp (z,5)

where m; is the memory at time ¢ which depends on the choice of hidden units for each layer, h;
is the final RNN output, and the network(function) f basically is the core of the structure which
performs the predictive loop. For instance, in a simple one-layer RNN the following equation holds:

ht =0 (Whhht—l + Whm.lft) .

Therefore, by defining m; = h; and f(z,u) = o(W"hy + Whez), we arrive at the simple RNN
model. After creating the model, a cost function is to be defined for the learning task. Most com-
monly, the Cross Entropy loss between the prediction distribution ; and the target distribution y; is
used to capture the prediction error and is defined as

V]
CE(Ys, i) = Z Y5 log(9e.5), &)
j=1

Since we have N samples, we minimize the sum of cross entropy loss over all samples:

N

Loss = Z CE(yt, t)-

t=1

3 Our Approach

In this section, we describe the two modifications we make on the classical RNNLM.

3.1 Projection onto the Qutput Token Space Through the Embedding Matrix

In language modeling, the targets and the inputs have the same number of dimensions(|V|), and
they could naturally be considered to live in the same metric space. Based on this idea, we make the

https://github.com/inanhkn/informed-rnnlm
https://github.com/inanhkn/informed-rnnlm

ed o d o

Cross Entropy > Zfil CE(yi, i)
B SO O SR . SO TT SO
Softmax
zth thT ztlT th . T
Ux()+b
hi_3 Iy hi_y I»

Tp— Tp— L1 T

Lx ()

ut_3T ut_QT ut_lT utT T

/ / / I i §

Figure 1: Typical RNNLM unrolled in time

following modifications: We first constrain h; to be of the same dimension as x;. We then modify
the output projection to be as follows:

Zt — LT}Lt . (6)

This achieves two things: First, it forces the RNN output to be in the same space as the input
word vectors. This is because (6)) essentially takes inner product of the RNN output with all the
other word vectors, and the prediction distribution g, will have its maximum weight at the index
where the corresponding word vector has the maximum inner product with h; (maximum vector
similarity). Second, eliminating the U matrix significantly cuts down the number of variables in the
model, especially for very large vocabularies.

3.2 Augmenting the Loss

In training multi-class classification models, the standard objective is to match the prediction dis-
tribution, ¢ with the target distribution, y through minimizing the cross entropy loss. However, the
target distribution is classically a “one-hot” distribution; that is, it is one at the entry which points
to the true target and zero everywhere else. On the other hand, in most cases it might be desirable
to have a target distribution which is more informed about the statistical relationships between the
targets. In our example of language modeling , for instance, the word “terrific” in the sentence “this
is a terrific method” could be replaced with the word fantastic” without having a notable alteration
in the sentence meaning. Motivated by this fact, we introduce a more informative target distribution,

¢ at time ¢, as follows:

ve = LT (Lyy), (7)
B exp (ve;)

= (8)
Y SV exp (vy)

Essentially, (7)) looks up the word vector for the target word and takes the inner product of that word
vector with all other word vectors, and (8] turns these inner products to a probability distribution by
applying the softmax function. Note that the calculation of §; (equations (7)) and (B)) is very similar
in structure to that of the prediction distribution g (equations (6) and (@)). This similarity underlies
the overarching idea of our work, which is to have the target and prediction at the word-vector level
and then to project them onto the token space through utilizing the metric space captured by the
word embeddings.

For computing the augmented loss at time ¢, we compute the KL-distance between the prediction
distribution ¢; and the informative target distribution g;. The final loss is a linear combination of
this loss and the standard loss:

Loss = CE(yt, §t) + oD 1 (Gt ||9¢)- ©)

« is a model hyper-parameter that controls the relative weight of the augmented loss in the overall
loss. Note that in (), theoretically speaking, we are not able to replace the second term (KL
divergence) with cross-entropy since

N - Yt,i - - - . . _
Drcr(9ell9e) = Zyt,i log f = Zym log §¢,i — Zyt,i log e = CE(y,) — H(Gr),
i b i i

and H () contains L, which is a variable we wish to optimize for. However, in practice we did
not observe a significant disparity in performance when we replaced the K L-divergence term with
cross-entropy. Our proposed model with the two improvements is depicted in Figure 2]

Before concluding this section, we would like to give a unified mechanistic account of our proposed
changes to the RNNLM. By constraining the RNN output to be the same size as the input word
vectors and by using the same matrix (embedding matrix, L) to project from token space to RNN
state space and vice versa, we are forcing the final RNN output to live in the word vector space.
At the same time, we project the target word token onto the same word vector space and compute
similarities to all the other words in that space (the same as what we do with the RNN output) to yield
a distributed target probability distribution which utilizes the information stored in the word vector
space. When the loss calculated with this distribution is combined with the standard loss, model
incurs relatively less loss by predicting words which are similar (in the language modeling scope) to
the observed target word although not exactly the same, hence it receives improved supervision.

4 Experiments

4.1 Dataset

We evaluate our method on the Penn Treebank corpus [7]], which has been widely used for bench-
marking language models. The dataset contains 929k training words, 73k validation words, and 82k
test words. The size of vocabulary for this dataset is |[V/| = 10000. This dataset is available online
and can be downloaded here[[]

4.2 Results

For fair comparison of our model to the current state of the art, we constructed networks very similar
in architecture to those published in [S]], where the authors achieved the state of the art on the Penn
Treebank corpus. Specifically, we trained 2-layer LSTMs with equal number of hidden units, and
applied dropout to the inputs and to the output of each hidden layer as described in [5]. Again, as

"www.fit.vutbr.cz/ imikolov/rnnlm/simple-examples.tgz

www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

Ao
boss o |

Softmax
R v AT Ty
Zi=1 CE(yi, yz) « Zi:1 DKL@%H?%)
Cross Entropy >®< K L distance
U U1 |Z/t2 Qt2| 1| Ut

M(L, f, LT, 0)

Figure 2: Proposed Structure

was done in [5], we set the input word vector dimension to be the same as the number of hidden
units.

As a first experiment, we tested the improvement contributed by our two proposed modifications
individually relative to baseline. Note that although the two proposed changes are not entirely inde-
pendent (see discussion in Section [3.2)), we could in principle still study them in isolation. For this,
we constructed a baseline network with a 2-layer LSTM with 200 hidden units in each layer. We
tuned the model parameters to achieve the best validation perplexity. We used Adam optimizer with
the parameters recommended in [[L0], performed truncated backpropagation for 20 time steps, and
chose to use keep probability of 0.5 for dropout. We then separately constructed a network where we
modify the baseline network by using the embedding matrix in the output projection step (equation
[6), and one where we augment the loss with our proposed loss term (equation [9) with av = 0.3.
Finally, we constructed a network with both our proposed modifications. The results are listed in
Table[Tl

In our second experiment, we compared our method with both proposed modifications to those
presented in [5]. We trained 2-layer LSTM models with 200,300,650, and 750 hidden units. For the
networks with 200 and 300 hidden units, we unrolled the network for 20 time steps, used batches
of size 50, and used Adam optimizer. For the networks with 650 and 750 hidden units, we unrolled
the network for 35 time steps, used batches of size 20, and used stochastic gradient descent as the
optimizer. In stochastic gradient descent, we set the initial learning rate to 1 and used a rate decay of
0.83 starting from the 9th training epoch. In the small networks (200 and 300 hidden units), we also
tried replacing the K L-divergence term in (9) with cross entropy and found that there are no notable
differences between using the two (Table2)), hence we opted for cross-entropy for the large (650 and
750 hidden units) networks for the sake of runtime. The results of this experiment are listed in Table

2

Overall, we see that using our proposed approach, with networks as small as 300 hidden units in
each LSTM layer we attain perplexity close to that achieved with 650 hidden units in each LSTM
layer previously (84.7 versus 82.7). Furthermore, with medium sized networks (650 and 750 hidden
units), we beat the previous state of the art which was achieved by using significantly larger number
of RNN units (1500 hidden units).

Due to our limited computational resources, we were not able to explore the large parameter regime;
however based on our assessment of the results of incrementally growing the network size, we
believe that further increase in network size will have only a modest decrease in the average word
perplexity for the Penn Treebank corpus.

Model Test Perplexity ~Configuration

batch size:50, optimizer:Adam

200 hidden units 104.5 dropout: 0.5

200 hidden units batch size:50, optimizer:Adam
only LT in output projection 97.6 dropout: 0.7

200 hidden units batch size:50, optimizer:Adam
only augmented K L loss 98.2 dropout: 0.7, « = 0.3

200 hidden units batch size:50, optimizer:Adam
both proposed modifications 90 dropout: 0.7, « = 0.3

Table 1: Comparison of proposed modifications to baseline in the Penn Treebank Corpus

Model Test Perplexity ~Configuration

batch size:20, optimizer:SGD
200 hidden units [5]] 114.5 dropout: None
200 hidden units batch size:50, optimizer:Adam
Proposed-KL(CE) 90 (89.6) dropout: 0.7, « = 0.3
300 hidden units batch size:50, optimizer: Adam
Proposed-K L(CE) 84.9 (84.7) dropout: 0.6, o = 0.3

batch size:20, optimizer:SGD
650 hidden units [5]] 82.7 dropout: 0.5

batch size:20, optimizer:SGD
1500 hidden units [5] 78.4 dropout: 0.35
650 hidden units batch size:20, optimizer:SGD
Proposed-C E 78 dropout: 0.5, o = 0.35
750 hidden units batch size:20, optimizer:SGD
Proposed-C'E 76.7 dropout: 0.5, a = 0.15

Table 2: Comparison of our method to previous best work in the Penn Treebank Corpus

5 Possible Extensions

We believe that the idea we introduce in this paper is versatile and could be deployed in various
other settings where inputs and outputs live in the same space. Natural language processing field in
general is naturally a very suitable host for such a scheme as often times one is interested in having
words as the output. Machine translation for instance is an immediate candidate that we would like
to use the method we introduce here.

6 Conclusions

We presented a novel loss scheme which utilizes the information already present in the word repre-
sentations of a language model to improve learning. We showed that this scheme helps even smaller
models to learn and generalize much better compared to the previously reported networks of the
similar sizes, and that it pushes the state of the art in relatively medium sized models.

References

[1] Joshua T Goodman. A bit of progress in language modeling. Computer Speech & Language,
15(4):403—-434, 2001.

[2] Tomas Mikolov. Statistical language models based on neural networks. Presentation at Google,
Mountain View, 2nd April, 2012.

[3] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Re-
current neural network based language model. In INTERSPEECH, volume 2, page 3, 2010.

[4] Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan Honza Cernocky, and Sanjeev Khudan-
pur. Extensions of recurrent neural network language model. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pages 5528-5531. IEEE, 2011.

[5] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

[6] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[7] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large anno-
tated corpus of english: The penn treebank. Computational linguistics, 19(2):313-330, 1993.

[8] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the

properties of neural machine translation: Encoder-decoder approaches. CoRR, abs/1409.1259,
2014.

[9] Junyoung Chung, Caglar Giilcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

	Background & Introduction
	Problem Statement
	Our Approach
	Projection onto the Output Token Space Through the Embedding Matrix
	Augmenting the Loss

	Experiments
	Dataset
	Results

	Possible Extensions
	Conclusions

