
Protein Family Classification with Neural Networks

Timothy K. Lee
Program in Biomedical Informatics

Stanford University
tklee@stanford.edu

Tuan Nguyen
Department of Statistics

Stanford University
tuanminh@stanford.edu

Abstract

Understanding protein function from amino acid sequence is a fundamental prob-
lem in biology. In this project, we explore how well we can represent biological
function through examination of raw sequence alone. Using a large corpus of
protein sequences and their annotated protein families, we learn dense vector rep-
resentations for amino acid sequences using the co-occurrence statistics of short
fragments. Then, using this representation, we experiment with several neural net-
work architectures to train classifiers for protein family identification. We show
good performance for a multi-class prediction problem with 589 protein family
classes.

1 Introduction

Next-generation sequencing technologies generate large amounts of biological sequence informa-
tion in the form of DNA/RNA sequences. From DNA sequences we also know the amino acid
sequences of proteins, which are the fundamental molecules that perform most biological functions.
The functionality of a protein is thus encoded in the amino acid sequence and understanding the
sequence-function relationship is a major challenge in bioinformatics. Investigating protein func-
tional often involves structural studies (crystallography) or biochemical studies, which require time
consuming efforts. Protein families are defined to group together proteins that share similar function,
and the aim of our project is to predict protein family from raw sequence. We focus on training infor-
mative vector representations for protein sequences and investigate various neural network models
for the task of predicting a protein’s family.

2 Background/Related Work

Traditionally, analyzing protein sequences involves searching for common motifs or through phylo-
genetic comparison against known protein sequences. As such, classifying a new protein sequence
relies heavily on feature engineering using prior knowledge and experts for annotation. Previous
work by Asgari et al. [4] demonstrated that word2vec vectors [9] representing trigrams of amino
acids could be trained on large amounts of protein sequence data. The resulting vector representa-
tion maintained known biological relationships and were successfully used as features for protein
family classification.

Neural Networks (NNs) models have achieved state-of-the-art performance on language modeling
tasks in recent years and are now seeing adoption for biological problems. For example, Alipanahi et
al. [3] have used convolutional neural networks to accurately predict the binding affinity of proteins
to different DNA or RNA sequences or to predict splice specificity for different RNA sequences.
Zhou et al. [13] have also used convolutional neural networks to predict epigenetic and chromosomal
features from DNA sequences and recurrent architectures have been applied to this problem [11].
We will apply these language models to the task of protein family classification.

1

Total # of sequences 550,960
Sequence length 10-35000
Total # of families 10345
Total # families with > 200 sequences 589
of sequences used for classification 317460

Table 1: Uniprot dataset of annotated protein sequences.

MAFSAEDVLKEYDRRRRMEALLLSLYYP... Pox VLTF3
MSIIGATRLQNDKSDTYSAGPCYAGGCS... Pox G9-A16
MQNPLPEVMSPEHDKRTTTPMSKEANKF... US22

Figure 1: Examples of protein sequences and their families

3 Approach

3.1 Dataset

Our dataset consists of annotated protein sequences (Fig. 1) from the Universal Protein Resource
(UniProt) database [1] , with 550,960 protein sequences across 10,345 families in total. Each se-
quence is a string of characters of length varying from 10 to 35,000. Of all the protein families in the
dataset, we select only those with more than 200 examples. This results in 589 families and 317,460
sequences used in the training and testing (Table 1).

To train models for protein family classification, we limited ourselves to sequences of less than 1000
overlapping trigrams (Fig. 2). The data was then split into training/validation/test folds at a 70/15/15
ratio preserving class stratification.

3.2 Global Vector (GloVe) for Amino Acid Sequence Representation

Previous work using the word2vec skipgram model was able to generate trigram representations
that reproduced known physical relationships and were useful for protein classification. We evalu-
ate whether Global Vectors for Word Represetation (GloVe) can generate improved representations
using the full co-occurrence statistics available in our corpus.

To create a distributed representation of our protein sequences, we represent each sequence as a
series of trigrams (a block of 3 amino acids) and create a distributed representation of each trigram
using GloVe.

3.3 Baseline Classifier (Support Vector Machine)

For our baseline, we used a classification model described in Asgari et al. where a protein sequence
is represented by the sum of all its trigram representations. We used a radial basis kernel SVC
with penalty parameter C = 10, γ = 10−3, using a one-vs-one multi-classification scheme. The
hyperparameters were selected using grid search. The model took approximately 7 hours to train
using the SVC package in scikit-learn [10].

MVE-RLG-IAV-EDS...; VER-LGI-AVE-DSP...; ERL-GIA-VED-SPK...

Figure 2: Examples of shifted non-overlapping trigrams from the first sequence in Fig. 1

2

3.4 Neural Network Models

We used overlapping trigrams in sequence as the inputs to the neural networks and initialized our
inputs with our GloVe embeddings and allowed them to be trained.

3.4.1 Gated Recurrent Neural Networks (GRU)

Gated Recurrent Neural Networks [6] extend recurrent neural networks (RNNs) by using gated
recurrent units (GRUs, [5]). The goal of these units is to overcome the limitations of RNNs in
capturing effects over different time scales and overcome issues with vanishing gradient over long
sequences. GRUs consist of two additional gates, an update gate and a reset gate. Using the new in-
put, the new memory content is calculated with the reset gate determining how much of the previous
hidden state is used before the nonlinear activation. Then, the update gate determines how much of
the new memory content is used with the previous hidden state to determine the new hidden state.
Together, these two gates allow long or short term dependencies to be expressed.

3.4.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory [7] models are a variant of RNN. In RNN, learning takes place over a
sequence of steps, where inputs to a step comprise also of the output of the previous step’s hidden
layer. This enables the network to capture information from the past that can inform future predic-
tions. LSTM adds “gates” that control the degree of influence of information from the current step
and from the previous steps, as well as filtering out the parts of memory that are less important in
making a prediction. This mechanism allows more flexible control over memory [7].

RNN cell RNN cell RNN cell RNN cell

input input input input

maxpool

composition and softmax label. . .

. . .

Figure 3: Recurrent neural network schematic.

3.4.3 Bidirectional LSTM (biLSTM)

BiLSTM is an extension of LSTM, in which an additional recurrence starts from the last timestep
of the forward recurrence and proceeds backward to the first timestep of the forward recurrence.
The information in the “future” steps thus can be captured and aids predictions making at earlier
timesteps [12].

3.4.4 Convolutional Neural Network (CNN)

Convolutional neural networks have gained popularity for their success in computer vision problems
[8], but can also be applied to sequence data. Convolution filters of a fixed size are scanned across
a sequence to produce activation across that sequence. Since sequence data can vary in length,
we maxpool over the entire sequence to find the maximal activation of a filter across a sequence.
The maximal activation of many convolutional filters used as a fully connected layer to the output
classes. For this study, we used three filter sizes (3, 9, 27), with 128 filters each.

3.4.5 Evaluation method

Protein family labeling is a multi-class classification problem, so we used F1 score,

F1 = 2× precision × recall
precision + recall

to evaluate the models’ performance.

3

4 Experiments

4.1 Training

4.1.1 GloVe Embeddings

We computed the trigram co-occurrence matrix for all sequences using a symmetric window of 12
on each side. We considered non-overlapping trigrams in all three shifts resulting from shifting the
reference location by one. Co-occurrences in a window were weighted by the inverse distance to the
window center. This resulted in 10,311 trigram represented and 62 million non-zero entries in the
cooccurrence matrix. Based off of the histogram of co-coccurrence counts (Fig. 4a), we selected
a co-coccurence cap of 20 for the GloVe model. To train the GloVe embedding, we implemented
the GloVe model in Tensorflow [2] and trained the embeddings using the hyperparameters specified
in Table 4b using a GTX 980 Ti. The GloVe model quickly converged during training (Fig. 4c),
but some progress was made even in later iterations. To see whether the embeddings separated
well, we visualized the embedded representations with t-SNE (Fig. 4d) using the first 25 principal
components.

(a) Trigram co-occurrence counts in the
UniProt dataset.

Max co-occurrence (xmax) 20
Learning rate 0.0001
Batch size 512
Embedding size 100
Number of Epochs 50

(b) GloVe Training Parameters

(c) GloVe Loss (d) t-SNE visualization of GloVe
embeddings

Figure 4: GloVe training

4.1.2 Neural Network Model Training

In our initial LSTM recurrent network implementation, we used only the final hidden state’s output
to calculate logit scores for the SoftMax. When we trained these models, the loss would not appre-
ciably decrease below 6, which is close to that of random guessing (− ln(1

589)), and we realized we
could not overfit even small models. Using a more complex biLSTM structure, we had more initial
success and we were able to achieve test F1 scores of about 0.5 on the full dataset. We drastically
improved our models by maxpooling over the entire sequence of hidden states and our final mod-
els concatenated the maxpool and final hidden state. With the maxpooled output, we could overfit
smaller datasets easily and on the full dataset our models were able to reach validation F1 scores
above 0.9 within the first 7 epochs.

4

Figure 5: Performance during training for neural network models (Green: Validation set score, Blue:
Training set score).

Our LSTM implementation achieved near perfect accuracy on the training set, so we attempted to
decrease the hidden state size as a way to generalize the model further. During training we saw
that the gap between training and validation was higher, so we attempted to decrease the dropout
probability instead, which showed only a slight improvement.

For the biLSTM model, we first tried the averaged and stacked outputs of the final hidden layers
of the forward and backward nets as input to the softmax. Similar to LSTM models, we observed
significantly better results using maxpooling. Specifically, we applied maxpooling over all hidden
layers’ outputs of the forward net and backward net, respectively, and stacked the maxpooled outputs
before feeding into the softmax layer. The biLSTM model was able to reach a validation F1 score
above 0.9 within the first 3 epochs. Since we achieved near perfect accuracy on the training set
with single direction LSTM models, it suggested we did not need the additional complexity of the
biLSTM, which took nearly three times longer to train per epoch.

We attempted to train a gated recurrent neural network using similar parameters and found that
it achieved the best results of our models. It had slightly better performance than the LSTM and
biLSTM models, but this might be due to the particular instantiation of hyperparameters. However,
the GRU model was training 10% faster than the LSTM models.

For the convolution networks, we saw a gain from using l2 regularization on all filters and weights,
although it is unclear why since our training score is higher with regularization. From the loss
histories, it seems that without regularization the training loss didn’t stabilize even after 20 epochs.

We found dropout to be quite effective. For all the models, using only one hidden layer was enough
to achieve sufficient model complexity. We experimented with a number of learning rates. We found
that learning rate of 0.01 worked best for most cases. No significant improvement from random
initialization of the weights was observed.

4.2 Results

Our results suggest that protein families can be accurately predicted from amino acid sequences.
In our subproblem consisting of 589 protein classes, it seems that more complex models (such

5

as the bidirectional LSTM) are not required for high accuracy. All of the neural network models
outperform the SVM baseline, which does not take trigram order into account. Our best performing
model was the GRU, but it is also likely we could achieve similar results with the other neural
network architectures with hyperparameter tuning. Since we could achieve near perfect training
performance most neural network models, it seems we should not see much improvement with
more complex model such as biLSTM. With few exceptions, our GRU performed better than the

Model # hidden units lr l2reg dropout Val. F1 Test F1
SVM - - - - - 0.87876
LSTM 100 0.01 0 0.85 0.926192 0.92515
LSTM 50 0.007 0 0.85 0.890175 0.888509
LSTM 100 0.01 0 0.70 0.925665 0.922225
biLSTM 100 0.007 0 0.9 0.928740 0.927899
GRU 100 0.01 0 0.8 0.953141 0.948452
CNN 384 0.001 0 0.5 0.9006 0.897853
CNN 384 0.001 0.0001 0.5 0.934 0.934

Table 2: Test F1 scores for different models and hyperparameters

SVM baseline and did not significantly underperform for any given class. Examining the confusion
matrcies, we see that the SVM performs very badly on certain classes, which is not evident with the
GRU (Fig. 6). To directly compare the per class performance, we plotted the F1 scores for each

(a) SVM confusion matrix (b) GRU confusion matrix

Figure 6: Classification Performance SVM vs GRU

family for both classifiers (Fig. 7). The GRU classifier performs better overall and there do not seem
to be classes where the GRU performs poorly where the SVM does well.

To visualize our results, we used tSNE to examine the embeddings generated as outputs from the
recurrent networks (before computing logits). From the t-SNE embeddings (Fig. 8), we see that
class examples are often clustered tightly together. Ideally, similar protein classes should be close
together in the embedding space (such that biological meaning is somehow represented), but on
visual inspection no clear pattern of nearby classes exist.

5 Conclusions and Future Research

We have experimented with a number of neural network architectures to train a classifier for the
task of protein family identification. We demonstrate that neural network classifiers give superior
performance to our tuned SVM baseline on the same Uniprot dataset; in particular GRU outper-
formed our SVM baseline by almost 7%. In comparison to the SVM in Asgari et al. [4], which was

6

Figure 7: GRU vs SVM per class F1-score

trained many single-class classifiers, the multi-class protein is more difficult and our neural network
architectures perform well.

There are a number of directions in which we could expand this project. One would be to experiment
with different lengths of the n-grams used to train the GloVe embeddings for the protein sequence.

Another direction would be to investigate if there exists any relationship between the biological
properties of a protein family captured by our models. It is not clear from our analysis if the rep-
resentation the trigrams or our sequences maintained biological meaning similar to how semantic
and syntatic meaning is preserved in natural language models. Further investigation is required to
examine both the GloVe embeddings and sequence representation to determine if higher order func-
tion is being used by the classifiers. It is possible that we are achieving good performance without
biological representation and that we might require additional features if those representations were
the focus.

7

(a) GRU tSNE embeddings (color coded)

(b) GRU tSNE embeddings (class labels)

Figure 8: t-SNE embeddings of test sequences

8

References

[1] Universal protein resource (uniprot) database. http://www.uniprot.org/
downloads. Accessed: 2015-05-05.

[2] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[3] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology,
2015.

[4] Ehsaneddin Asgari and Mohammad RK Mofrad. Continuous distributed representation of
biological sequences for deep proteomics and genomics. PloS one, 10(11):e0141287, 2015.

[5] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[6] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback
recurrent neural networks. arXiv preprint arXiv:1502.02367, 2015.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[9] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[11] Daniel Quang and Xiaohui Xie. Danq: a hybrid convolutional and recurrent deep neural net-
work for quantifying the function of dna sequences. bioRxiv, page 032821, 2015.

[12] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. Signal Pro-
cessing, IEEE Transactions on 45.11 (1997): 2673-2681.2., 1997.

[13] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep
learning-based sequence model. Nature methods, 12(10):931–934, 2015.

9

http://www.uniprot.org/downloads
http://www.uniprot.org/downloads

	Introduction
	Background/Related Work
	Approach
	Dataset
	Global Vector (GloVe) for Amino Acid Sequence Representation
	Baseline Classifier (Support Vector Machine)
	Neural Network Models
	Gated Recurrent Neural Networks (GRU)
	Long Short-Term Memory (LSTM)
	Bidirectional LSTM (biLSTM)
	Convolutional Neural Network (CNN)
	Evaluation method

	Experiments
	Training
	GloVe Embeddings
	Neural Network Model Training

	Results

	Conclusions and Future Research

