Sentence Correction using Recurrent Neural
Networks

Gene Lewis
Department of Computer Science
Stanford University
Stanford, CA 94305
glewisl7@stanford.edu

Abstract

In this work, we propose that a pre-processing method for changing text data to
conform closer to the distribution of standard English will help increase the perfor-
mance of many state-of-the-art NLP models and algorithms when confronted with
data taken “from the wild”. Our system receives as input a text word, sentence or
paragraph which we assume contains (possibly none) random corruptions; for-
mally, we say that the input comes from a corrupted language domain that is a
superset of our target language domain. Our system then processes this input and
outputs a “translation” or “projection” to our target language domain, with the
goal of the output being to preserve the latent properties of the input text (senti-
ment, named entities, etc.) but mutated in a way that embeds these properties in a
representation familiar to other NLP systems.

1 Introduction/Related Work

In our literature search, we’ve found that there is a multiplicity of representations for languages,
ranging from rule-based models that encode “hard” grammatical knowledge [L] to stochastic
models that learn a suitable representation from data; these stochastic representations range from
simple n-gram models [2]] to highly complex probabilistic network representations [2} |3]. Hidden
Markov Models have been shown to exhibit a strong ability to capture many of the high-level
dynamics of natural English language [2]]; however, such models make the rather strong assumption
of conditional independence of the current word from all previous words given the immediately
previous word, which prevents HMM’s from modeling crucial long-range dependencies. Recurrent
Neural Networks, on the other-hand, have been shown to be more adept at capturing these
long-range dynamics [4]. In our work, therefore, we turn to the recent success of neural networks
in the field of Natural Language Processing for model inspiration.

Our review of Luong et al. (2015) [5] demonstrated a very similar system performing the
task of attention-based neural translation. Their aim was to use a neural network that models
the conditional probability p(y|z) of translating a source sentence, x1,Zs,...,T,, t0 a target
sentence, 41, Y2, ..., Yn. Lheir system consists of two components: (a) an encoder that computes a
representation s for a source sentence and (b) a decoder that generates one target word at a time and
decomposes the conditional probability as

log(p(ylz) = > logp(y;iy<j, s)
j=1
This is the system we chose to utilize for our task. We found that almost all recent related work such
as (Kalchbrenner and Blunsom, 2013[6]; Sutskever et al., 2014[7]]; Cho et al., 2014[8|]] Bahdanau
et al., 2015 [9]; Luong et al., 2015[3]; Jean et al., 2015[10]]) have the same NMT system. The



difference between the approaches are in which RNN architectures were used for the decoder and
how the encoder computed the representation of the source sentence s. Kalchbrenner and Blunsom
(2013) used an RNN with the standard hidden unit for the decoder and a convolutional neural
network for encodingthe source sentence representation. On the other hand, both Sutskever et
al. (2014) and Luong et al. (2015) stacked multiple layers of an RNN with a Long Short-Term
Memory (LSTM) hidden unit for both the encoder and the decoder. Cho et al. (2014), Bahdanau et
al. (2015), and Jean et al. (2015) all adopted a different version of the RNN with an LSTM-inspired
hidden unit, the gated recurrent unit (GRU), for both components.

While our approach is very similar to that of Luong et. al 2015, our aim was to apply those
principles to a different task. Their task was machine translation, while our task was correcting
social media at the character level. Our training differed from Luong et al. 2015. Their stacking
LSTM models have 4 layers, each with 1000 cells, and 1000-dimensional embeddings. Futhermore,
their parameters were uniformly initialized in [-0.1, 0.1], they used 10 epochs, they started with a
learning rate of 1 where after every 5 epochs they halved the learning rate, their mini-batch size was
128, and their normalized gradient was rescaled whenever the norm reached 5. In contrast, due to
the significant time taken to train, we didn’t tune our parameters. For example, we only had at most
2 layers.

We contrast our character-level approach with the commonly used word-level approach. We
examine the approach of Bahdanau et al. 2015, which is a word-level approach at machine transla-
tion. Their paper aimed to address the issue of representing the source sentence as a fixed-length
vector. Their strategy was a proposed model that (soft-)searches for a set of positions in a source
sentence where the most relevant information to the generated word is concentrated. The model
predicts a target word based on the context vectors associated with these source positions and all
the previously generated target words. Instead of attempting to encode the source sentence into a
fixed-length vector, they encoded the input sentence into a sequence of vectors and chooses a subset
of that sequence while decoding the translation, allowing them to better handle long sentences.

2 Approach

2.1 Sentence Representation

Before we can construct a full model for English language, we must first choose a sufficient input
representation. Because our ultimate goal is correction of text, we anticipate the need to handle
an exponentially large input space of text tokens that don’t correspond to standard vocabulary
dictionaries by choosing to model character-level dynamics [4] over the standard word-level
representation.

We model characters as a one-hot 94-dimensional vector that selects which of the 94 print-
able ASCII characters we wish to represent. We forgo using a pre-trained character-embedding
matrix; though research has been fairly vigorous in this field, no readily useful implementations
could be found. Thus, we choose to learn our own character-embedding as part of the model
training.

2.2 Language Dynamics Representation

Given that our raw representation will be characters, we can now turn to the question of modeling
English language itself. We choose to utilize Recurrent Neural Networks [[11] as our basic model,
as recent literature has shown it’s effectiveness in capturing many of the dynamics of fluent
English [4]]. RNN’s are similar to Hidden Markov Models in that they ingest and process the input
in a step-wise manner, utilizing the way the previous input interacted with the model to inform how
the current input should interact with model. However, unlike Hidden Markov Models, RNN’s learn
to model input dynamics by embedding them into a shared hidden representation space, allowing
them to implicitly capture sophisticated interactions that the explicit probabilistic representation of
an HMM can’t [4].



<eog>

P L e a )
T 1
1 1 1 1 1 1 1
P 1 z t u t <Go> P 1 € a s

I:l LSTM Encoder Unit I:l LSTM Decoder Unit

Figure 1: Example of RNN normalization model. The unnormalized text is fed in the bottom of the
encoder, and the decoder generates the translation.

2.2.1 Number of Layers

Motivated by results in the literature suggesting that a larger number of layers in a neural model
are capable of learning progressively “higher-level” and more abstract concepts from data [12]], we
postulate the hypothesis that a deeper neural model will be able to learn natural language concepts
beyond character dynamics, such as proper word-level tokenization, recognition of named entities,
and simple grammatical rules. To this end, we trained a one layer network, and a two layer deep
network.

2.2.2 Hidden Units

We choose to utilize Long-Short Term Memory (LSTM) Units [[13] for the hidden units in our
neural network, as LSTM units have special “gating” machinery that allows them to propagate error
signals over many time steps; we reasoned that this choice is logical given our decision to model
characters instead of words, leading to very long decompositions of sentences as character chains
and finer-grained, more-difficult-to-capture character level language dynamics.

2.2.3 Probabilistic Emission Model

For our probabilistic emission model, we choose to utilize the standard maximum element of the
result of the Softmax operation [12] on an output 94-dimensional vector, given by:

eft(@);
Z?:l eft(z)i

where n = 94 and f;(z) € R™ is the pre-softmax output of our neural translation model at timestep
t.

oi(fi(z)); =

This choice has dual motivation: Softmax is an easily differentiable operation, which comes
in handy for our training algorithm (see section 2.3); Softmax is also a simple, easily-understood
transformation that allows as much of the probabilistic machinery as possible to be learned and
modeled by the underlying Recurrent Neural Network, preventing difficult-to-calculate inference
and difficult-to-interpret equations from entering into emission calculations.

2.3 Training Algorithm

For our training algorithm, we utilize standard mini-batch stochastic gradient descent optimization
via the backpropagation algorithm [[12] with sequence cross-entropy as our loss function, given by:

Lay) = 73 plog(oul i)

where, for each timestep, we sum over the cross-entropy loss in predicting the character for the
current time-step. This loss attempts to syncronize two probability distributions together; since the
output of the Softmax of our network represents a probability distribution over characters, and the



target probability distribution is a one-hot vector with a one in the slot corresponding to the target
character and zeros everywhere else, this loss is interpretable as encouraging our model to not only
predict the correct character but predict the correct character with as strong a confidence as possible
(captured by trying to push all the probability mass to the slot with the desired character).

3 Experiments

3.1 Data

A detailed review of related literature led to an English corpus of 2000 texts from the National
University of Singapore [14]. From our review, it seems that this is the only publicly available
normalized corpus for texts.

When preprocessing our data, we first examined the histogram of lengths of source sentences and
target sentences; we noticed that though the longest source sentence and target sentence were
approximately of length 200 and 220 respectively, the number of sentences with length larger than
170 and 200 were very sparse. Because the number of steps to unroll the neural translation model
is dictated by the largest number of steps we expect from an input and output sentence, we filtered
these long sentences out to cut down on model size and model compile time. We also filtered out
text that didn’t contain strictly printable ascii characters; all in all, these two processing steps only
eliminated 11 source-target message pairs out of 2000, leaving us with plenty of data to work with.

Because the data was received in a randomized format (subsequent text messages aren’t cor-
related), we didn’t bother to perform randomization pre-processing. Because we didn’t have an
large parallel corpus to work with, we were interested in preserving as much data for training as
possible; this motivated our decision to split 99% of the data into a training set and 1% into a testing
set. Our final data counts were 1970 for the training set and 19 for the testing set.

Example data from the testing set:
Input: “Ic...Haiz,nv ask me along?Hee,im so sian at hm.”
Output: “I see. Sigh, why do you never ask me along? I’m so bored at home.”

3.2 Baseline Models

For our baseline model, we implemented a character-level unigram model where each line in our
source set is mapped character by character to its corresponding line in our target set; the result of
this training is an unnormalized conditional probability distribution, represented by a dictionary
mapping each character in the source set to a list of counts of characters from the target set. To
generate translations from a given source file, we examine each source character and consider the
related list of target characters, outputting the character with the highest count (this is equivalent to
probabilistic maximization over the target characters).

A word-level unigram model was also implemented. Punctuations and capitalization were
preserved in the training set. During text generation, we again output the most common word that
is mapped to by each corrupted word in question.

We computed the perplexity of both models. The average perplexity in our validation set for the
character-level model and word-level models are 5.366 and 2.009, respectively. We found that using
a character-level model introduced much more variation in the translation process, where characters
often mapped to spaces. Because the source and target words were often not aligned, the mapping
for characters led to inaccurate results. Therefore, the word-level model for our baseline achieved
much better, meaningful results in translation.

3.3 Neural Translation Models

Both neural-translation models were trained for 8000 steps with a batch size of 64, for a total of
approximately 260 epochs over our training set. We used an initial learning rate of 0.5, a learning



rate decay factor of 0.99, and a maximum gradient norm of 5 to prevent “gradient blow-up” [15]].
Validation testing and serialization was carried out every 100 steps; at the 8000 step, the 1-layer
model achieves a validation perplexity of 1.060, while the 2-layer model achieves a validation
perplexity of 1.102.

We used a hidden state size of 100 for both models. This choice serves dual purpose: for
computational reasons, this size helped the models fit nicely in memory, which helped speed up
the training process. It’s also approximately a one-to-one correspondence with the total number
of characters, which we hypothesize forces the model to learn a character-by-character dynamical
system; though we acknowledge that it’s likely that a larger hidden state will allow our model to
achieve a better perplexity in a shorter amount of training time, we’re interested in the ability of the
models to learn natural language characteristics directly on a character level.

3.4 Error Analysis

Cnaracter-Level Per plexity

Figure 2: Character-Level Perplexity across models and data

Ward-Level Per ple dry

Figure 3: Word-Level Perplexity across models and data

3.4.1 Comparison to Baseline Models

We evaluated the output of our 1-Layer and 2-Layer models by using it as input to calculate
perplexity in our baseline models. Our 1-Layer model achieved 5.014 perplexity on the baseline
character-level model and 1.533 on the baseline word-level model. Our 2-Layer model achieved
5.278 perplexity on the baseline character-level model and 1.490 on the baseline word-level model.

From these results, we observe that both of our models generated text with a lower perplex-
ity score than the original input text, indicating that the baseline models would more accurately
predict the correct translation given our text. Both models achieved relatively close perplexity



values, with the 1-Layer achieving a lower perplexity value for the character-level model while the
2-Layer achieved a lower perplexity value for the word-level model.

3.4.2 Qualitative Results on Test Set

We found that both models are able to correct basic spelling errors (“tink™ translated to “think™),
perform short and long-range abbreviation expansion (‘“u” translated to “you”; “ppl” translated
to “people”), basic grammatical correction (translated sentences always begin with a capitalized
letter and end with some form of punctuation, even when the source sentence did not), and decent
preservation of text when no error is present (“I’m outside now” translated to itself).

This final property is especially surprising, given that the training input contained no source-
target pairs that were the same to encourage that this behavior should be learned.

Though both models managed to learn the above properties, we note that there are indeed
differences between the produced translations of the one-layer and two-layer models.

The two-layer model learned more powerful punctuation rules, such as:

Input: “Lea u there?”
1-Layer: “Lea are you there?”
2-Layer: “Lea, are you there?”

However, the one-layer model has a much easier time expanding complex abbreviations:

Input: “Ic...Haiz,nv ask me along?”
1-Layer: “I see ask me along?”
2-Layer: “Ic5. Sing, neen ask I am”

We believe that this mismatch in predictive ability stems from the sizes of the networks. Because
of the larger size of the 2-layer network, more iterations are required before converging on a local
optimum that can properly identify properties such as sentence length and abbreviation expansion;
because the 1-layer network has significantly fewer parameters, it’s probable that the network has
converged much closer to a local minimum than the 2-layer network given the same number of train-
ing iterations. However, we note that the ability of the 2-layer network to learn proper punctuation
rules indicates that it is capable of learning deeper concepts than the 1-layer network. This reason-
ing has precedence in the literature [[12], where deeper neural networks used for image classification
require much larger datasets and much longer training times to converge than their shallower coun-
terparts; it’s even suggested that shallower networks severely outperform deeper models when data
is scarce [16].

4 Conclusions

One of the challenges in our research was the scarcity of normalized datasets widely available for
our training. While there are plenty of social media data such as tweets, they are not translated to
proper English. We were limited to 2000 normalized text messages from 2003 to 2015. Because of
this smaller dataset, our results were less generalizable, performing much better with malformed
text written in a similar style to the corrupted input that we trained on. Thus, for future steps, we
plan to either utilize Mechanical Turk to utilize human intelligence to translate social media, which
according to our literature review didn’t work so well for others, or to manually translate more
input to use for training. We hypothesize that more data would allow our neural network to translate
significantly more accurately.

Due to limited resources, we were unable to train models with hidden state size larger than
100 or number of layers larger than 2; it has been shown that such improvements can yield very
sizeable increases in neural network performance. Thus, we hypothesize that if access to large GPU



computing resources is obtained, much more powerful and accurate models could be trained using
an expanded corpus generated as explained above.

Finally, we’re very interested in exploring applications of our text-correction model to other
languages and evaluate its performance; if the text-correction scheme can be extended to other
languages, this model could be both an important pre- and post-processing step in the machine
translation pipeline.

References

[1] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition, 2003.

[2] Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA, USA, 1999.

[3] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques
- Adaptive Computation and Machine Learning. The MIT Press, 2009.

[4] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding recurrent
networks. CoRR, abs/1506.02078, 2015.

[5] Christopher D. Manning Minh-Thang Luong, Hieu Pham. Effective approaches to attention-
based neural machine translation. Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, 2015.

[6] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. EMNLP, 2013.

[7] Oriol Vinyals Ilya Sutskever and Quoc V. Le. Sequence to sequence learning with neural
networks. NIPS, 2014.

[8] Caglar Gulcehre Fethi Bougares Holger Schwenk Kyunghyun Cho, Bart van Merrienboer and
Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical ma-
chine translation. EMNLP, 2014.

[9] Kyunghyun Cho Dzmitry Bahdanau and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. /CLR, 2015.

[10] Roland Memisevic Sebastien Jean, Kyunghyun Cho and Yoshua Bengio. On using very large
target vocabulary for neural machine translation. ACL, 2015.

[11] Zachary Chase Lipton. A critical review of recurrent neural networks for sequence learning.
CoRR, abs/1506.00019, 2015.

[12] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014.

[13] Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735-1780, November 1997.

[14] NUS Natural Language Processing Group, 2015.

[15] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient
problem. CoRR, abs/1211.5063, 2012.

[16] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.



	Introduction/Related Work
	Approach
	Sentence Representation
	Language Dynamics Representation
	Number of Layers
	Hidden Units
	Probabilistic Emission Model

	Training Algorithm

	Experiments
	Data
	Baseline Models
	Neural Translation Models
	Error Analysis
	Comparison to Baseline Models
	Qualitative Results on Test Set


	Conclusions

