
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Deep Learning For Mathematical Functions

Kesinee Ninsuwan
Institute of Computational and Mathematical Engineering

Stanford University
Stanford, CA 94305

eveve@stanford.edu

Abstract

In this project, we are interested in applying deep learning technique to predict the
output of a mathematical function given its inputs. In particular, we apply Recur-
sive Neural Networks (RNN) to learn vector representation of inputs and predict
function output. In this project, we restrict ourselves to integer-valued functions.
We show the results for 1-layer RNN and 2-layer RNN with one linear function
and one nonlinear function. The results show that 1-layer RNN perform better
than 2-layer RNN in both cases. Moreover, 1-layer RNN gives higher accuracy in
linear function than in nonlinear function.

1 Introduction

Deep learning has proven to be successful in Natural Language Processing. Vector representation of
words could capture both semantic and syntactic behavior of the text. It is a powerful tool in many
applications ranging from simple to very complex tasks. Some examples of these tasks are spell
checking, keyword search, machine translation, and question answering.

Our interest in this project lies on applying deep learning technique in studying mathematical func-
tions. As an analogy to vector representation of words, we attempt to learn vector representation of
inputs of a function to predict the true function value given inputs. In the work of [6], Recursive
Neural Networks (RNN) shows a very good result in discovering mathematical identities. Motivated
by this work, we explore the performance of RNN in our task.

The following is the outline of this report. Section 2 describes the problem precisely as well as the
evaluation. In Section 3, we present the model that will be applied to solve the problem. Section 4
discusses the experiments and results of the model. In Section 5, we discuss some restriction of the
model. And Section 6 gives the conclusion.

2 Problem Statement

Given the inputs u, v of a function f , the task is to predict an accurate output f(u, v). In this project,
we restrict the functions of interest to be integer-valued functions. The training data consists of a set
of data points in the form (u, v, f(u, v)), where u, v are input of function f and f(u, v) is the output
of function. The training set, dev set, and test set are generated by simple matlab code.

Definition 2.1 For any input u, v, let f̂(u, v) be the output from the model and f(u, v) be the true
value of the function. The model gives a correct output for u, v if and only if

f̂(u, v) = f(u, v)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

3 Technical Approach and Models

In this project, we restrict the functions of interest to be integer-valued functions that take 2 input
integers such that the input u, v and output f(u, v) are in [0, 999]. For each function, we apply
Recursive Neural Networks (RNN) with ReLU activation layer(s) and one softmax layer. The model
gives three predicted output ŷ(1), ŷ(2), ŷ(3). Each ŷ(i) ∈ R10 gives the probability that digit i of
function value is the numbers 0, 1, . . . , 9. Let z(i) = argmax ŷ(i). Then the predicted output is
f̂(u, v) = 100 · z(1) + 10 · z(2) + z(3). Here the cost function is Cross Entropy loss:

CE
(
y(1),y(2),y(3), ŷ(1), ŷ(2), ŷ(3)

)
= −

3∑
j=1

10∑
i=1

y
(j)
i log

(
ŷ
(j)
i

)
,

where y(j) ∈ R10 is the one-hot label vector.

We use two RNN models in this project, one using one ReLU activation layer and another using two
ReLU activation layers. For one ReLU layer, we have

h(1) = max

(
W (1)

[
LLeft

LRight

]
+ b(1), 0

)
ŷ(j) = softmax

(
U (j)h(1) + b(s,j)

)
, for j = 1, 2, 3

where Li ∈ Rd,∀i = 0, 1, . . . , 999. Here W (1) ∈ Rd×2d, b(1) ∈ Rd, U (j) ∈ R10×d, bs,j ∈ R10.
Figure 1 shows the diagram of RNN used in this model.

Figure 1: RNN with one ReLu layer and one softmax layer.

For 2 ReLU layers, we use the same loss function. The networks can be written as

h(1) = max

(
W (1)

[
LLeft

LRight

]
+ b(1), 0

)
h(2 = max

(
W (2)h(1) + b(2), 0

)
ŷ(j) = softmax

(
U (j)h(2) + b(s,j)

)
, for j = 1, 2, 3

where W (2) ∈ Rmiddle×d, b(2) ∈ Rmiddle, and U (j) ∈ R10×middle.

Note that one advantage of this model is that we do not assume any linearity of the functions.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

4 Experiments and Results

We show the result for the model with one linear function f(u, v) = u+v and one nonlinear function
f(u, v) = u2 + v. The training set contains 60, 000 data points. The dev set and test set contain
20, 000 data points each. We train the model by picking the data points at random from training set
with epoch schedules. To train each model, we first train over different epochs, and choose epoch
that gives highest accuracy for dev set. For 1-layer RNN, we then train with different word vector
dimension d (wvecdim) and test with dev set. We choose wvecdim that gives highest accuracy.
For 2-layer RNN, we train to pick dimension of middle activation layer that gives highest accuracy.
After we find optimal values for parameters for each model, we test it with test set to evaluate the
performance.

First we show the result for linear function f(u, v) = u+v. Figure 2 (left) shows the plot of accuracy
vs epoch. It shows that the accuracy of dev set increases with epoch. Due to the limit in computation
power, we take 100 epochs as optimal value and use it with different values of dimension d of word
vector for inputs. The plot of accuracy of dev set vs word vector dimension (wvecdim) in Figure 2
(right) shows that the accuracy increases with wvecdim. However, it tends to stay about the same
after wvecdim = 45. Therefore, for 1-layer RNN with f(u, v) = u + v, we train the model with
epoch = 100 and wvecdim = 45.

Figure 2: For linear function f(u, v) = u+ v: (Left) the plot of accuracy vs epoch for 1-layer RNN
model, (Right) the plot of accuracy of dev set vs word vector dimension d.

The result for 2-layer RNN applied to linear function f(u, v) = u + v is shown in Figure 3. Here
we use wvecdim = 30. Similar to 1-layer RNN, accuracy of dev set increases with epochs. So we
take optimal epoch to be 100. In the plot of accuracy vs middledim in Figure 3 (right), the accuracy
is highest at middledim = 45.

Figure 3: For linear function f(u, v) = u+ v: (Left) the plot of accuracy vs epoch for 2-layer RNN
model, (Right) the plot of accuracy of dev set vs middle dimension of activation layer

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Next we show the result for non linear function f(u, v) = u2 + v. The plots of result for 1-layer
RNN is shown in Figure 4. And the plots result for 2-layer RNN is shown in Figure 5. Similar to
the result for linear function, accuracy of dev set increases with epoch for both models. For 1-layer
RNN, wavecdim = 45 gives highest accuracy. For 2-layer RNN, optimal middledim = 35.

Figure 4: For nonlinear function f(u, v) = u2 + v: (Left) the plot of accuracy vs epoch for 1-layer
RNN model, (Right) the plot of accuracy of dev set vs word vector dimension

Figure 5: For nonlinear function f(u, v) = u2 + v: (Left) the plot of accuracy vs epoch for 2-layer
RNN model, (Right) the plot of accuracy of dev set vs middle dimension of activation layer

Table 1 shows the accuracy for each model with test set. For both functions, 1-layer RNN performs
better than 2-layer RNN. For 1-layer RNN, the model gives higher accuracy for linear function.

Table 1: The accuracy of each model for the test set

1-layer RNN 2-layer RNN

f(u, v) = u+ v 0.93 0.70
f(u, v) = u2 + v 0.81 0.72

5 Challenges and Restrictions

In Section 3, we describe the model for functions that take two integers as input. We also applied it
to only functions that take two inputs in this project. Extending this model to use with functions that
take more than two inputs is trivial. It is precisely the framework of Recursive Neural Networks [3].
In particular, the network will have more than one layer of nodes.

The model presented in this project still has a lot of restrictions. First restriction is that we require the
integer-valued functions with inputs and output in [0, 999]. One extension for this work is to modify

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

the model to use with real-valued functions. For the model presented in this paper, extending the
range of output increases dimension of parameters.

With limited computational power, we could not train the model with higher epochs. The plots of
accuracy vs epoch in Section 4 shows that accuracy of dev set increases with epoch. Therefore, one
way to improve the accuracy is to train with more values of epoch to find optimal value.

Although the model we presented in this paper still has string restriction, the results will be the first
step toward applying deep learning to study more complex functions with larger domain and larger
images.

6 Conclusion

In this paper, we give a model based on Recursive Neural Networks to solve the problem of predict-
ing the value of a function give its inputs. One advantage of this model is that we do not assume the
linearity for other properties of the functions. The result show a better performance of 1-layer RNN
over 2-layer RNN when applying to both linear and nonlinear functions.

Some future study includes modifying the model using more activation layers, adding regularization
techniques, and changing nonlinear functions in activation layers. In establish stronger conclusion,
we must test the model with more classes of functions. It is also interesting to study the behavior of
the model when we train with training set with different distribution.

Acknowledgments

The author would like to acknowledge Mike Phulsuksombati for the discussion about the project
idea and all the data used in this project. He also gives an insightful advice throughout the process.
In addition, the author would like to thank the instructor Dr. Richard Socher and all the staff of class
CS224D at Stanford University for all wonderful advices and guidance.

References

[1] Benign, Y. (2012). Practical recommendations for gradient-based training of deep architectures.
arXiv:1206.5533.

[2] Socher, R., Bauer, J., Manning, C.D., Ng, A.Y. Parsing with Compositional Vector Grammars.

[3] Socher, R., Lin, C.C., Ng, A.Y., and Manning, C.D. Parsing Natural Scenes and Natural Lan-
guage with Recursive Neural Networks.

[4] Socher, R., et al. (2013) Recursive deep models for semantic compositionality over a senti-
ment treebank. Proceedings of the conference on empirical methods in natural language processing
(EMNLP). Vol. 1631. 2013.

[5] Pennington, J., Socher, R., Manning, C.D. GloVe: Global Vectors for Word Representation.

[6] Zaremba, W., Kurach, K., and Fergus, R. (2014). Learning to Discover Efficient Mathematical
Identities. arXiv:1406.1584v3.

[7] Zaremba, W. and Sutskever, I. (2015). Learning to Execute. arXiv:1410.4615v3.

5


	Introduction
	Problem Statement
	Technical Approach and Models
	Experiments and Results
	Challenges and Restrictions
	Conclusion

