
Discovering Adverse Drug Reactions via Natural
Language Processing of Twitter Posts

Benjamin Pastel
bpastel@stanford.edu

Blanca Villanueva
villanue@stanford.edu

Abstract

Several studies show that user-posted data on social media sites can be used to de-
tect adverse drug reactions (ADRs) faster than typical methods (e.g., via reporting
to the FDA Adverse Event Reporting System), and throughout a drug’s market
lifetime. Previous studies have sourced data from search queries and social media
posts and have tested several NLP and machine learning methods to yield increas-
ingly accurate results. This study aims to emulate published results by optimizing
for effective input vectors and using more advanced deep learning models to clas-
sify ADRs present in Twitter posts. Our baseline model (logistic regression) was
able to achieve an F1 score of 0.43 (versus the state-of-the-art ADR Class F1 of
approximately 0.57 on a comparable data set) using word-presence vectors created
using the GloVe Twitter vocabulary and a 3-layer Feed Forward Neural Network.

1 Background

Adverse Drug Reactions (ADRs) are harmful effects that are caused by the non-abusive consumption
of medication. After a drug passes clinical trials and is released to the market, it is still important for
health professionals to be able to detect, assess, understand, and prevent ADRs related to said drug.
This set of activities is commonly referred to as pharmacovigillance.

A number of studies have used NLP techniques on publicly available data to discover ADRs. Several
of these studies use data from online fora specifically related to medical experiences (e.g., Medline,
AskAPatient); few make use of more general social media sites, and few use advanced deep learning
techniques for classification.

This is a challenging NLP task for several reasons: the format of Twitter posts is highly informal, and
a minority of these posts include personal medical information; negative sentiment does not directly
translate into an ADR mention (i.e., the task is not simple sentiment classification). In addition to
applying more advanced techniques to this domain, this study is also an exploration of the feasibility
of non-medical social media as data sources for pharmacovigillance efforts.

2 Data

The data were collected from a study conducted by the Diego Lab at Arizona State University[2].
The data set consists of 7,281 Twitter posts manually labelled on whether or not the tweet contains
an ADR mention. The tweets were annotated by two domain experts and a pharmacology expert.
The tweets were pre-selected to contain a drug mention. The ratio of tweets with ADR mentions to
those without is roughly 9:1.

For example, here are 3 randomly selected tweets with ADR:

@GangamStyleDad is that like quetiapine. when i had to take that crap
i could not stay up longer than 11 hours.

1

I reaaaallly need to take my Paxil but it makes me feel so delirious
and just messed up.

This quetiapine isn’t working damnit!!!! Does make me hungry
at night though... *sigh*

and here are 3 randomly selected tweets (after filtering for obscenity) with a drug mention but no
ADR:

@suedovecote I don’t think it does,not when I take it anyway.
#fluoxetine

@HockeyBroad halls. Totally losing my voice and need a lozenge.
Haha.

Xarelto side effect: "may cause bleeding, most of which is serious
and sometimes leads to death" That sounds fantastic.

2.1 Word Embeddings

While Sarker et. al. create word embeddings from the corpus of collected tweets, we use several
different vector representations for inputs:

1. Word Presence vectors, similar to the BOW representation, except that it does not track
word frequency within the tweet

2. Average of word vectors present in each tweet, based on the GloVe Twitter word vectors
(Pennington, Socher, and Manning 2014)

3. For the RNN and CNN models, we used left-to-right sequences of GloVe word vecs; either
truncated to the first n words, or windows centred on the first drug mention

2.2 Additional processing of GloVe Twitter vectors

For the first implementation using pre-trained GloVe word vectors, we do not directly input GloVe
word embeddings into our model. The word vectors for each word in a tweet are averaged together
such that each tweet is represented by a single input vector. For word vectors not included in the
GloVe Twitter vocabulary, we simply use the zero vector, such that the resulting input vector effec-
tively ignores any words missing from the GloVe Twitter vocabulary.

2.3 Train, Development, Test Sets

For our baseline model, we split the 7,281 tweets into stratified train, development, and test sets.

Table 1: Train, Development, Test Split of the Data
Tweets

Train 4,281
Dev 1,000
Test 2,000

3 Models

3.1 Logistic Regression

Logistic regression is well suited for this binary classification task because it can handle large fea-
ture spaces. We compare two different input types: (1) word-presence vectors of dimension the
vocabulary, with a 1 in each index if the corresponding word is present in the tweet, (2) the average
of GloVe word vectors per tweet.

2

3.2 Feed Forward (FF)

Our 3-layer feed forward network contains an input layer, 1 hidden ReLU layer, and a tanh activation
layer; dropout occurs at all layers. We compare the same two input types as with the LogReg model.
Optimized hyperparameters include: dropout for each layer, learning rate, dimensions of the word
embeddings, number of hidden units, and the weight attached to the positive (ADR) class. Published
research (Iyyer et al. 2015) indicates that simpler models that do not incorporate word order can
outperform more complex methods that do, even in cases where input sentences are short (e.g.,
tweets).

3.3 Recurrent Neural Net (RNN)

Because tweets are relatively short, we experiment with a simple RNN model to see whether or not
the model weights are able to capture enough information about tweet semantics. Though tweet
length typically reaches 20 words, we explore the hyperparameter space to address the performance
limitations of RNNs related to input length. Our RNN compares two different input types: (1)
concatenated GloVe word vectors for a fixed window beginning from the start of the tweet, (2)
concatenated GloVe word vectors centred on the drug mention. Optimized hyperparameters include:
dropout for the hidden layers, learning rate, dimensions of the word embeddings, L2 regularisation,
and the weight attached to the positive (ADR) class.

3.4 Convolutional Neural Net (CNN)

We also implement a CNN model to explore whether or not this model can capture any finer-grained
semantics within the n-grams in the inputs. Our CNN compares the same two input types as the
RNN model. Optimized hyperparameters include: dropout for the max-pool layer, learning rate,
max sentence length, L2 regularisation, and the weight attached to the positive (ADR) class.

4 Hyperparameter Tuning

Hyperparameters for our models were chosen based on the ADR class F1 score on the validation
set.

4.1 Tokenising Tweets

Due to the highly informal nature of our data, different methods of tokenisation were tested across
all models for best results against the validation set. The best performance was achieved by keep-
ing misspellings and embellishments, and merely removing special characters directly attached to
words. For example, ’coooool’ and ’cool’ were kept as separate, valid words; ’#xanax’ was con-
verted to ’xanax’. The plot below compares the best performance of the FF network using tokeni-
sation wherein words with special characters were considered distinct (i.e., ’#xanax’ and ’xanax’
considered distinct), and wherein words had special characters removed (i.e., ’#xanax’ was con-
verted to ’xanax’).

3

5 Results

5.1 Evaluation

The manually labelled tweets serve as the ground truth for all of our models. We evaluate these
models based on precision, recall, and F1 score.

5.2 Regularisation

L2-regularisation was used in both RNN and CNN models, and dropout was used in all neural net
models. We tested more aggressive λ values and dropout rates were used after noticing that train
and validation set ADR class F1 scores diverged quickly after training ADR class F1 broke approx-
imately 0.65. We performed a simple grid search over several L2 values and dropout rates for the
final models of each type. An interesting observation is that despite more agressive regularisation,
the divergence of train and validation F1 scores did not improve. After some exploration, we hy-
pothesise that this is likely due to the high level of non-overlap between the train, validation, and
test set vocabularies. Our final models use dropout rates of 90% for the CNN model, and 70% for
the FF net.

4

The best results achieved by our models are displayed in the table below, along with the state of the
art results from Sarker et al.

5.3 Loss Function

The loss function we used was a standard cross-entropy. Our group implemented batch stochastic
gradient descent (batch size of 25). The highest validation ADR Class F1 was typically reached
before epoch 10, and most models’ losses stagnated once training ADR Class F1 reached approxi-
mately 0.65.

Table 2: Validation Set Best Performance by Model
SotA LR+WP FF+WP WindowedRNN+GloVe CNN+GloVe

Precision N/A 0.446 0.449 0.165 0.363
Recall N/A 0.280 0.349 0.226 0.373
F1 0.592 0.344 0.392 0.19 0.368

The parameters that led to the best validation set performance were then saved and used against the
test set described earlier in this paper. The top performing models were the FF and CNN models:

Table 3: Test Set Best Performance of Top 2 Models
FF+WP CNN+TweetStart

Precision 0.461 0.338
Recall 0.410 0.447
F1 0.434 0.385

6 Discussion and Conclusion

All models performed relatively poorly against the SotA model implemented by Sarker et al., whose
group implemented a conditional random field model (CRF). While CRFs and other graphical mod-
els are able to encode priors and domain knowledge, there is no analogue for these priors in the
intermediate layers of the neural net models implemented in this study. This could contribute to the
discrepancy between Sarker’s and our group’s results.

Additionally, there were a large number of common words not present in the GloVe data set. Our
custom Word Presence (WP) vectors outperformed the GloVe vectors in all models wherein the two
embedding types were directly compared (i.e., LR and FF).

Though our models did not outperform the SotA, we are hopeful that further exploration of the
hyperparameter space can bring the neural network models to comparable performance levels to the
SotA.

Acknowledgments

We would like to thank the CS224D teaching team for their time and support, as well as the Diego
Lab for their annotated Twitter data set.

References

[1] Iyyer, Mohit, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daum Iii. ”Deep Unordered Composition
Rivals Syntactic Methods for Text Classification.” Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers) (2015): n. pag. Web.

[2] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word
Representation.

[3] OConnor, Karen et al. Pharmacovigilance on Twitter? Mining Tweets for Adverse Drug Reactions. AMIA
Annual Symposium Proceedings 2014 (2014): 924933. Print.

5

[4] Sarker, Abeed, and Graciela Gonzalez. Portable Automatic Text Classification for Adverse Drug Reaction
Detection via Multi-Corpus Training. Journal of biomedical informatics 53 (2015): 196207. PMC. Web. 16
May 2016.

6

	Background
	Data
	Word Embeddings
	Additional processing of GloVe Twitter vectors
	Train, Development, Test Sets

	Models
	Logistic Regression
	Feed Forward (FF)
	Recurrent Neural Net (RNN)
	Convolutional Neural Net (CNN)

	Hyperparameter Tuning
	Tokenising Tweets

	Results
	Evaluation
	Regularisation
	Loss Function

	Discussion and Conclusion

