
Learning hypernymy in distributed word vectors

via a stacked LSTM network

Irving Rodriguez irodriguez@stanford.edu

June 4, 2016

Abstract

We aim to learn hypernymy present in distributed word representa-
tions using a deep LSTM neural network. We hypothesize that the se-
mantic information of hypernymy is distributed differently across the com-
ponents of the hyponym and hypernym vectors for varying examples of
hypernymy. We use an LSTM cell with a replacement gate to adjust the
state of the network as different examples of hypernymy are presented. We
find that a seven layer LSTM model with dropout achieves a test accuracy
of 81.4% on the Linked Hypernyms Dataset, though further comparison
with other models in the literature is necessary to verify the robustness
of these results.

1 Introduction

In the last several years, distributed word vectors have shown the ability to learn
semantic and syntactic information without receiving explicit inputs outlining
these properties. Particularly, both the word2vec[6] and GloVe[13] models have
shown that distributed word vectors cluster together in space based on linguistic
similarities and that these relationships can be quantitatively captured with
simple vector algebra and analogy tasks.

How these properties manifest themselves within the word vectors, however,
is not well understood. This is especially true of paradigmatic linguistic rela-
tionships like hypernymy and synonymy. There is significant linguistic benefit
in understanding these complex properties - a robust hypernymy model would
greatly facilitate automatic taxonomy construction, for example, and Wolter and
Gylstad have noted that paradigmatic relationships tend to be similar across
languages and could be used to improve machine translation models.[15]

Previous models have failed to capture the full linguistic complexity of hyper-
nymy. These models often rely on supervised methods that are not linguistically
consistent with the properties of hypernymy, namely asymmetry, transitivity,
and hierarchy. As such, we attempt to remedy these shortcomings through a re-
current neural net that maps a hyponym vector to one of its hypernym vectors.
Specifically, we set out to learn the mapping from a hyponym to a hypernym

1

vector based strictly on the components of the distributed vectors with a stacked
LSTM network.

2 Methods

We set out to build a deep recurrent neural network to learn a function H(hwo

that produces the hypernym vector given the input hyponym vector of word wo,
hwo

.

2.1 Stacked LSTM Model

A long short-term memory (LSTM) models seem well-suited for our task. We hy-
pothesize that hypernymy (and other linguistic relationships which distributed
vector models seem to automatically learn) are baked directly into the individ-
ual components of the vectors. The LSTM architecture contains a cell state
Ct at each given time step t. In our case, this represents our activation matrix
which maps a hyponym vector to its hypernym vector. The hidden layer then
consists of four calculations dubbed the forget, input, activation, and output
gates. At each time step, we input the hyponym vector hto into the first cell,

it = σ(Wih(t−1)e +Wihto + bi)

ft = σ(Wfh(t−1)e +Wfhto + bf)

ot = σ(Woh(t−1)e +Wohto + bo)

ct = tanh(Wch(t−1)e +Wihto + bc)

where i, f , o, c denote the forget, input, and output, and activation gates
with their respective bias terms, and h(t−1)e denotes the predicted hypernym in
the previous time step.

In essence, each of these gates calculates which components of the vectors
within the cell carry meaningful information and updates the cell state accord-
ingly. The forget gate scales down the components of the input state Ct−1,
the input gate scales the components of wt to be added to the cell state, the
activation gate determines the new component values to be added to the cell
state, and the output gate yields a vector to scale the predicted hypernym.

Our LSTM cell combines the input and forget gates into a replacement gate
which only adds the output of the input gate to the cell state in components
which were forgotten. We then update the cell state and calculate the predicted
hypernym,

Ct = ft × Ct−1 + (1− ft)× ct (1)

hte = ot × tanh(Ct) (2)

2

where × denotes element-wise multiplication.
We hypothesize that the input, forget, and output layers should be able to

identify the components of the hyponym vectors which best predict hypernymy
and update the weights accordingly. Since hypernymy is hierarchal and a single
word can have hypernyms on varying levels of generality, these components
could change from example to example but should be handled appropriately at
each step t in the replacement gate.

We minimize the quadratic loss function over our training set using mini-
batch SGD

J =
1

2
Σm

i=1||hie − hwe
||22 (3)

and optimize in the number of layers in the model and the number of hyponym-
hypernym pairs processed at each iteration of mini-batch SGD.

In order to prevent overfitting and improve our model’s robustness outside
of the validation set, we introduce dropout in between the penultimate and final
layers for our best-performing model.

We implement our stacked LSTM model using TensorFlow.
[1]

2.2 Piecewise Projection Model

We compare our performance to the supervised model outlined by Fu et. al.[4]
To replicate results, we use K-Means clustering in order to cluster the vector
difference hwo − hwe into k clusters for each word pair (wo, we) in our dataset.
For each cluster, we then learn a linear projection Ψj(hwo

) that maps a hyponym
to its hypernym and classify positive pairs when |Ψj(hwoi

)−hwei
| < δ for some

hypersphere radius δ in our difference vector space. We minimize the quadratic
loss over the dataset to learn the projections.

2.3 Distributed Word Vectors

We first train highly-dimensional word vectors using the publicly available word2vec
module.[9] Due to time constraints, we use a single optimized CBOW model to
obtain our pre-trained vectors for use as inputs into our LSTM network.

Our model uses Mikolov et. al’s method for consolidating common phrases
into a single token [?]. We thus learn an individual vector for these phrases
(consisting of up to 3 words, like ”new york times”) and treat them as a single
hyponym or hypernym.

2.4 Data

The Linked Hypernyms Dataset (LHD) provided by Kliegr as part of the DB-
Pedia project contains 3.7M hyponym-hypernym pairs. [10] These pairs are
generated by parsing the first sentences of Wikipedia articles for syntactic pat-
terns (i.e, ”X is a Y”) for hypernyms matching the article title.

3

The LHD set contains tokens for phrases longer than 3 words (like ”his-
tory of the united states”) and also contains many words which are not in the
vocabulary of our vector model. As such, we prune these pairs from the set.
This leaves roughly 1.5 million hyponym-hypernym pairs. We then sample 20%
of the remaining pairs to and evenly split them for use as our validation and
test sets.

We also evaluate the performance of our model on the BLESS dataset used
in previous hypernymy classifiers. [4] [14] The dataset contains 2.7k example
pairs parsed from the WackyPedia corpus using similar syntactic patterns. We
attempt to perform the same 10-fold cross-validation in order to compare our
accuracy with these classifiers.

The most common tokens for both datasets are shown in Appendix A. Both
of these datasets are publicly available. [3] [10]

Figure 1: Plots of the 3 principal components for each data set. Left: BLESS.
Right: Linked Hypernyms

3 Results

3.1 Word Vector Model

We trained a skip-gram model[5], choosing the set of vector dimensions, window
size, and negative sampling size (denoted d,w, sn, respectively) based on the
performance of the given model on the analogy task provided in the Google
word2vec implementation [9]. We use the July 2015 English Wikipedia dump
as the training set for our word vectors.

The parameters which achieve the highest accuracy are d∗ = 300, c∗ =
9, s∗n = 9. (Fig. 2)

3.2 Piecewise-Projection Model

We trained our piecewise-projection model using our pre-trained word2vec vec-
tors. We reserve 20% of the data for our validation and test sets and train-
ing on the remaining pairs. We choose the optimal k, δ based on the F1

4

Figure 2: Analogy task accuracy of word vector models. The accuracy of the
model with optimal parameters is shown as the black dot. Parameters are fixed
at (d = 200, c = 5, sn = 3).

score of each model with 10-fold cross-validation on the training set and find
(k∗BLESS = 30, δ∗BLESS = 3.5) and (k∗LHD = 15, δ∗LHD = 4.0) (Fig. 3)

We then use the optimal learned parameters to evaluate the model on the
respective test set. We report an F1 score of 87.0% on the BLESS set and 61.3%
on the LHD set.

Figure 3: F1 score of training phase for k clusters and a threshold δ. Left: 2.7k
pairs, BLESS. Right: 1.5M pairs, LHD.

3.3 Stacked LSTM Model

For the stacked LSTM model, we vary the number of layers from nl = 1 to 8.
Additionally, we tune the number of examples fed into the mini-batch SGD at
any iteration. Due to time constraints, we only add dropout to the two models
with the highest validation accuracy. We then test these models on the BLESS
set instead of tuning them once more on the validation set of BLESS.

For a given output vector, we count correct predictions as hypernym tokens
that one of the three vectors in our word vector space with the highest cosine
similarity to the predicted vector.

We find that that the models with b∗s = 50 and nl = 4, 7 perform best on
the LHD set. We report the test accuracies of these models and their dropout
counterparts in Figure 4.

5

Figure 4: Test accuracies of models with highest validation performance on both
the BLESS and LHD sets (F1 score for piecewise-projection classifier.

Figure 5: Accuracies for the piecewise-projection and stacked LSTM models
over the LHD set.

6

4 Discussion

Our stacked LSTM model has achieved moderate results on both BLESS and
LHD, though they are difficult to compare due to the widely varied results of
the piecewise-projection model on the two datasets.

The small size of the BLESS set, the abundance of many general words
(object, artifact) and the repetition of several hyponyms (castle, glove, cottage)
are likely biasing both models. It is clear that the LSTM model without dropout
is overfitting on the BLESS set because of its small size relative to the number
of total cells in the network. Though the model still performs well on the
test set, this is likely due to the test set containing words which also appear
in the training and validation sets (Table 1) whose hypernyms the model has
memorized.

On the other hand, it seems that the piecewise-projection is also simply
learning features of the words in the BLESS set. For a low threshold, increasing
the number of clusters greatly increases the model’s F1 score on the validation
set (Figure 3). We would expect only a modest increase as our number of clusters
approaches some ”true” value that describes the different levels of hypernymy
that exist in English. Nevertheless, all values of k converge to the same F1 score
on both the BLESS and LHD sets, and we find two very different optimal values
of k for both sets. This suggests the model is not learning linguistic information
about hypernymy but is rather optimizing for the structure of the BLESS set.

Nonetheless, the test accuracy that the seven-layer LSTM achieves on the
LHD set shows promise for learning a hypernymy mapping. The neural net
should improve (or stabilize) as the dataset grows, especially if dropout prevents
it from memorizing as it trains on more data. The significant positive offset
in validation accuracy during training as the batch size is increased suggests
that the model may benefit from seeing more ”levels” of hypernymy in a single
iteration. Though the information that the network state receives at a given
time step from previous time steps is not particularly clear, the broad diversity
of tokens present in the LHD set suggests that hypernymy is indeed complex
but not so broad that it manifests itself differently in word vectors in different
domain spaces and across pairs of varying generality. The model was able to
pinpoint the location of the input’s hypernym with some success in spite of these
complexities without making any assumptions about hypernymy’s behavior, like
the piecewise-projection model does.

We note that the model still has a major shortcoming in that it only pre-
dicts a single hypernym vector for a given hyponym. Hypernymy, however,
is a many-to-one mapping, and several papers [4] have shown that the hyper-
nyms of a single noun do not cluster together in vector space. As such, this
stacked LSTM model, if successful, is still unable to disambiguate between the
many hypernyms that a word may have. For example, there is little recourse
for choosing between ”fruit” and ”food” for the word ”apple” and also for a
polysemous hypernym like ”company”. Even so, it would be possible train a
model for different domains. More generally, the model could use the predicted
vector to generate a probabilistic distribution of possible hypernyms and con-

7

dition on other context words (say, those that appear with the hyponym in a
given sentence) to select the most likely hypernym from this group.

5 Conclusion

We note that future studies are necessary in order to verify and improve the
validity of our stacked LSTM model. If the model indeed succeeded in learning
a hypernymy mapping, it should perform well at predicting the hypernyms of
a noun hierarchy. As such, a well-documented hypernymy tree like that of
WordNet would serve as a reliable benchmark for testing this model.

Additionally, further tests can use different word vector models to see if
other learned representations, such as those in GloVe, are ”better” at learning
semantic relationships which are more easily parsed from the vector components.
If the LSTM cell is indeed capable of identifying these relationships, similar
models could be built for other semantic relationships like synonymy.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org.

[2] E. A. et. al. A study on similarity and relatedness using distributional and
wordnet-based approaches.

[3] M. B. et. al. How we blessed distributional semantic evaluation.

[4] R. F. et. al. Learning semantic hierarchies via word embeddings.

[5] T. M. et. al. Distributed representations of words and phrases and their
compositionality.

[6] T. M. et. al. Efficient estimation of word representations in vector space.

[7] Y. B. et. al. ”a neural probabilistic language model”.

[8] Y. Goldberg and O. Levy. word2vec explained: Deriving mikolov et al.s
negative-sampling word-embedding method.

[9] Google. word2vec, tool for computing continuous distributed representa-
tions of words.

8

[10] T. Kliegr. Linked hypernymys: Enriching dbpedia with targeted hypernym
discovery.

[11] N. Nayak. Learning hypernymy over word embeddings.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[13] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014.

[14] J. Weeds. Learning to distinguish hypernyms and co-hyponyms.

[15] B. Wolter and H. Gyllstad. Collocational links in the L2 mental lexicon
and the influence of L1 intralexical knowledge. 2011.

9

Appendices
APPENDIX I

Here, we present a list of some properties of the BLESS and Weeds datasets.

10

BLESS Hypernym Weeds Hypernym

artifact - 91 confederate - 2

object - 71 anthropology - 2

animal - 60 knoll - 2

creature - 60 artillery - 2

chordate - 52 feature - 2

vertebrate - 52 sociability - 2

food - 43 caterpillar - 2

device - 32 therapy - 2

produce - 31 delight - 2

beast - 26 fleck - 2

implement - 25 truthfulness - 2

good - 23 murder - 2

mammal - 23 letter - 2

commodity - 23 voting - 2

vehicle - 19 significance - 2

BLESS Hyponym Weeds Hyponym

castle - 15 stock - 1

hat - 14 gown - 1

glove - 12 beachhead - 1

bomber - 11 throbbing - 1

cloak -11 matron - 1

robe - 11 codification - 1

blouse - 11 anglican - 1

sweater - 11 underbrush - 1

vest - 11 scratch- 1

dress - 11 skit - 1

shirt - 11 livelihood - 1

fighter - 11 adjective - 1

sweater - 11 manager - 1

cottage - 11 nursery - 1

Table 1: Dataset Comparison.The top 15 most common hyponyms and hy-
pernyms in the BLESS and Weeds data. The BLESS data contains 1337 pairings
while the Weeds data contains 2564. 11

Hyponym Hypernym

saw artifact

banana food

rat rodent

beetle arthropod

jacket clothing

radio system

dress good

cabbage food

rat rodent

cat beast

frigate ship

car vehicle

saw artefact

saw object

bear vertebrate

bear chordate

coat clothing

salmon food

hotel building

pistol device

jacket commodity

sword implement

bear animal

bear creature

cabbage veggie

mackerel chordate

pine tree

flute artifact

saw utensil

cat mammal

Table 2: Indicative Pairs. All indicative pairs for k = 30 clusters.

12

