Neural Networks for Natural Language Inference

Sebastian Schuster
Department of Linguistics
Stanford University
sebschu@stanford.edu

Abstract

Predicting whether a sentence entails another sentence, contradicts another sen-
tence, or is in a neutral entailment relation with another sentence is both an impor-
tant NLP task as well as a sophisticated way of testing semantic sentence encoding
models. In this project, I evaluate three sentence encoding models on the Stanford
Natural Language Inference (SNLI) corpus. In particular, I investigate whether the
incorporation of syntactic information in the form of dependency tree labels into a
recurrent model leads to better sentence representations. I confirm previous results
that show that LSTM-RNNSs outperform a simple sum-of-words baseline but my
results also suggest that this simple method of incorporating syntactic information
has no stable positive effects on the performance of the model.

1 Introduction

The task of natural language inference is to determine whether a given hypothesis sentence is en-
tailed by a given premise sentence. For example, the premise “On April 21st, Barack Obama met
with officials in Cuba.” entails the hypothesis “On April 21st, Barack Obama was in Cuba.” while
it does not entail the hypothesis “On April 21st, Michelle Obama was in Cuba.”. This is an impor-
tant task because many other natural language understanding tasks can be framed as NLI problems.
For instance, if we want to extract the relations between entities from large web corpora, we can
formulate hypotheses of the form “entity-1 relation entity-2"" and check whether any of these candi-
date hypotheses are entailed by a sentence in the corpus. Other applications for which the notion of
entailment is highly relevant include commonsense reasoning (e.g., [2]) and semantic parsing.

The automatic prediction of entailment relations between two sentences can be very challenging
because a system has to be able to reason about many complex semantic phenomena. For example,
it has to know about the monotonicity properties of quantificational determines such as every and
some and that every NP VP always entails some NP VP but not the other way round. Further, for
almost all sentence pair, the system is required to have some world knowledge to make the right
prediction.

In recent years, there has been a lot of interest in applying different neural network models to this
task (e.g., [3]) in order to investigate whether such models can learn to predict entailment relations
from examples. Several models have shown promising results [211 [13} [16] [7} 5] but based on these
results it is still not entirely clear whether incorporating syntactic information into the model leads to
performance gains that cannot be attained through other means. In this paper, I am taking a first step
towards answering this question and I am investigating whether the incorporation of dependency
labels into a sequence-based model leads to performance improvements on the entailment relation
prediction task.



‘ 3-way softmax classifier ‘

I

‘ 100d tanh layer ‘

I

‘ 100d tanh layer ‘

I

‘ 100d tanh layer ‘

300d sentence 300d sentence
representation of premise | representation of hypothesis

Figure 1: Basic network architecture. (Adapted from [4].)

2 Task and Data

The task of predicting entailment relations is formally defined as following. Given a premise
sentence p and a hypothesis sentence h, we want to predict the entailment relation r €
{entailment, neutral, contradiction}. p entails h iff whenever p is true h is also true, p contradicts h
iff whenever p is true h is false, and p and h have a neutral entailment relation if they neither entail
nor contradict each other.

For my experiments, I use the Stanford Natural Language Inference (SNLI) corpus which was col-
lected by [4]. This corpus contains 570,152 sentence pairs, split into a training, development, and
test set of size 550,152, 10,000, and 10,000, respectively. Each sentence pair contains a premise
and a hypothesis and a label indicating the relation between the premise and hypothesis: entailment,
neutral, or contradiction. 2% of the sentences do not have a gold label as no label was assigned by
the majority of the MTurk workers. I exclude these examples from my experiments.

3 Models

I follow [4] and use the same basic architecture with different sentence encoding models. The
architecture of my model is illustrated in Figure |1} I encode both the premise and the hypothesis
as a 300-dimensional sentence vector, concatenate these vectors and feed them through three 100-
dimensional hidden units with a tanh non-linearity. The final predictions are output by a 3-way
softmax projection layer. For each layer, I use a different weight matrix W, and a different bias term
b;. The complete foward-propagation given two sentence vectors s, and sy, is then:

hy = tanh([sp; sp|W1 + b1)
hg = tanh(h1W2 + bz)
h,g = tanh(h2W3 + bg)

g = softmax(hsU + bs)

As a loss function, I use cross-entropy loss and I apply Lo-regularization to all model parameters
(all weight matrices W; and U). I therefore end up with the following total loss function.

. . A
loss(§,y) = CE(,y) + 11013

3.1 Sentence models

I evaluate three different sentence models, namely a sum-of-words baseline, a recurrent neural net-
work (RNN) with Long short-term memory (LSTM) units [9], and an LSTM-RNN with words and



dependency labels as inputs. I initialize the word embedding matrix of all models with the pre-
trained 300-dimensional GloVe word vectors [[15].

Sum of words The sentence representation of this model is simply the sum of the word vectors
of the individual words. Formally, given a sentence 1, ..., x,, where x; is the corresponding word
vector of the ¢-th word in the sentence, the sentence representation s is s = > .| .

LSTM-RNN This model is based on an LSTM-recurrent neural network. At each word ¢ of the
sentence, given the word vector z;, we compute the hidden layer h; as following.

— (W(i)xt F Uy + b<i>)
fi=o (met +UDn,_ + b(f))
0 =0 (W(‘))xt FUOR, |+ b(o))

uy = tanh (W(“)xt +Up, |+ b<“>)

e =ious+ froci
hi = oy o tanh(c;)

iy 1S an input gate, f; is a forget gate, o, is an output gate, and ¢; is a memory cell. The sentence
representation s in this model is the hidden layer h,, of the last word n of the sentence.

LSTM-RNN with dependency labels This model has the same architecture as the previous model
but instead of only using the word vectors as input to the RNN, I concatenate the 300-dimensional
word vector and a 10-dimensional dependency label vector. For each word, I use the dependency
label of the relation between the word and its head, or the special relation root for the head of the
sentence. I obtain these labels by converting the constituency trees of the SNLI dataset to English
Universal Dependencies (UD) [8 [14] using the Stanford UD converter [[17]. The embedding ma-
trix for the dependency labels is randomly initialized and learned during training. The sentence
representation is again the hidden layer h,, of the last word of the sentence.

3.2 Implementation and Tuning

I implemented all models with TensorFlow [1]]. For the LSTM-RNN models, I use the default
implementation in TensorFlow. I train all models with the Adam optimizer [[LO] with a learning rate
of 0.001. I apply dropout to the output of the sentence encoding models with a dropout probability
of 0.1. I use mini-batches of size 64 and I tune each model for 10 iterations and keep the model with
the highest prediction accuracy on the development set. Considering the relative high runtime of the
training procedure, I did not perform extensive hyperparameter tuning. Nevertheless, I experimented
with several different regularization strengths, and ended up with A = 0.001 for the sum-of-words
model and A = 0.00001 for the LSTM-RNN models. I also experimented with different dimensions
of the hidden layer of the LSTM (100 and 300) and found that a hidden layer with 300 units works
best. Further, I also tried using another hidden tanh-layer that projects the 300-dimensional word
vectors into 100-dimensional word vectors before they are used as input to the RNN as proposed by
[4]] but this also hurt performance and therefore I do not use this layer in my final implementation.

4 Results and Discussion

The upper part of Table [1| shows the prediction accuracies of my three models on the training,
development, and test set. These results show that the LSTM-RNN significantly outperforms the
sum-of-words baseline. The dependency labels lead to an improvement in accuracy of almost 1
percentage point on the development set but don’t seem to improve the predictions on the test set.

Learning Figure [2| shows the accuracy of my models after each epoch. This plot shows that all
models converge relatively fast and that the two LSTM models are able to fit the training data in a
better way which is not surprising considering that these models have a lot more parameters than the
sum-of-words baseline.



o
o 4
o .
"""" LSTM train
————— LSTM dev
o —— LSTM-dep train
g - |—— LSTM-dep dev
- sum train
> - sum dev
5]
s
3 2
Q
< o
n
~
o
o
l\' -
o T T T T T
2 4 6 8 10
Epoch

Figure 2: Accuracy of the different models (sum-of-words, LSTM-RNN, LSTM-RNN with depen-
dency labels) after each training epoch on the training and development set.

Qualitative comparison In order to assess the effect of including the dependency labels on the
performance of the RNN, I manually compared some of the predictions of the two RNN models
(henceforth basic and deplabel) on the development set. First of all, adding the dependency label
information did not only improve the predictions, it also led to wrong predictions on some sentences
that the basic model got right. Nevertheless, as shown in Table[T} it had an overall positive effect.

If we analyze the individual sentences that the deplabel model got right and the basic model got
wrong, then there don’t seem to be any specific constructions for which the dependency labels
helped and many of the differences in output between the two models seem random. However, one
notable thing was that the dependency labels seem to help the model determine which parts of the
sentence are part of the main clause. This seems to improve performance when the premise contains
a relative or adverbial clause and the hypothesis mainly focuses on information contained in the
main clause. For example, the deplabel model got the following sentences right, while the basic
model predicted the wrong label.

Premise: A young man is pushing a lawn mower to mow the grass.
Hypothesis: A guy rides a lawn mower in the grass.
Label: Contradiction

In this example, the deplabel model seems to be better at focusing on the main predicates pushing
and riding and is therefore able to predict that these two actions contradict each other. This also
seems to be the case for sentences that encode multiple events with an adverbial clause such as the
following.

Training Development Test
Sum-of-words 82.6 76.1 75.2
LSTM-RNN 86.6 78.6 78.5
LSTM-RNN w. dep. labels 82.9 79.4 78.5
100D LSTM-RNN [4] 84.8 - 77.6
1024D GRU [21]] 98.8 - 81.4
300D SPINN [3] 89.2 - 83.2

Table 1: Prediction accuracies of my models and previously reported results on the training, devel-
opment and test data. The numbers in bold are the best results among my models.



aclrelc|

40

lconj

nmod

iobj

punct

det:predet

dobj

advmod

mwe

[<d

xcomp

advcl

acl

nmod:npmod

appos

det

parataxis

root

csubj

ccomp

nummod

expl
compound:prt

aux
nmod: poss

discourse

nsubj

cc:preconj

neg
|

auxpass

amod
cop

mark

compouf

nmod:tmod

case

csubjpass
d

dep
-10

nsubjpa:

20

—-40 -30 -20 0 10 30 40

Figure 3: Visualization of the dependency label embeddings.

Premise: A shirtless man is singing into a microphone while a woman next to him plays an accor-
dion.

Hypothesis: A man is singing into a microphone.

Label: Entailment

For this example, the deplabel model correctly identified that the main clause entails the hypothesis
while the basic model incorrectly predicted that these two sentences contradict each other, presum-
ably because the adverbial clause contradicts the hypothesis.

Dependency label embeddings In order to assess, whether the deplabel model learned meaning-
ful embeddings for dependency labels, I projected the 10-dimensional dependency label vectors into
the 2-dimensional space using t-SNE [20]. The resulting 2-dimensional vectors are visualized in
Figure[3] This figure shows that there aren’t any clear clusters but at the same time the labels that
are close to each other often have similar syntactic functions in the sentence. For example, nominal
subjects (nsubj) and clausal subjects (csubj) are very close together. Likewise, relations denot-
ing clausal modifiers such as adnominal modifiers (ac1) and adverbial modifiers (advcl) are also
very close together. However, compared to a similar plot of dependency label embeddings in the
context of a neural network-based dependency parser [6], my model does not seem to be able to learn
the similarities very well which suggests that the model cannot make good use of the dependency
labels.

Comparison to previous results The lower part of Table[I|shows the results of sentence-encoders
that were used by other researchers. Compared to the LSTM-RNN by [4]], my LSTM-RNN models
perform almost 1 percentage points better which suggests that the larger hidden units of the RNN
and the resulting bigger number of parameters leads to a better model. However, my relatively sim-
ple model cannot compete with the more complex models by [21] and [S]. The 1024-dimensional
GRU sentence encoder by [21]] contains even more parameters and makes use of pre-trained ‘skip-
thought® vectors [[11] which both seems to further improve performance. This suggests that poten-
tially increasing the dimension of the hidden layer could further improve the performance of my
LSTM-RNN. Lastly, the SPINN sentence encoder by [5] performs even better. As this model recur-
sively combines the meaning of phrases along a constituency tress, this suggests that incorporating
syntactic information in a more complex way does lead to a better model. Whether and to what
extent this is also true for dependency trees still has to be investigated.

5 Related Work

Early work on NLI typically aligned individual words or phrases and then used symbolic reasoning
to compute whether the premise entailed the hypothesis (e.g., [12]]). More recently, many works
investigated how well distributed word and sentence representations can be used for this task and
since the recent release of the SNLI corpus, NLI has become a popular testing ground for sentence



representation models. [21] propose a model based on order-embeddings and view the task as a
partial order completion. They consider a hypothesis to entail a premise if the hypothesis dominates
the premise in the predicted partial order. [13] proposed a tree-based convolutional neural network
for the task. They use a feature detector to extract features from a dependency tree representation of
a sentence and then have a pooling layer to turn these features into a fixed-size sentence representa-
tion which they combine by concatenating, taking the difference, and computing the element-wise
product before feeding this combined vector into a softmax classifier. [[16] use a LSTM with a word-
by-word attention model, and [22] propose a modified version of the LSTM model which they call
match-LSTM (mLSTM). [7] also propose a variant of an LSTM to predict the relationship between
the premise and the hypothesis. Finaly, [5] propose the Stack-augmented Parser-Interpreter Neural
Network (SPINN) architecture which parses the sentence into a constituency tree and at the same
time also recursively builds up a sentence vector.

6 Conclusion and Future Work

For this project, I implemented three different sentence encoding models and evaluated them in the
SNLI task. I particularly investigated whether a simple incorporation of dependency labels has an
effect on the model’s performance. While I did observe a positive effect on the performance on the
delvelopment set, this did not carry over to the test set which suggests that this is not a stable effect
and mainly caused by random factors. This assumption is further supported by a qualitative analysis
of the output of the two RNN models which reveals almost no systematic improvements and also a
qualitative analysis of the dependency label embeddings do not suggest that the model learned very
meaningful representations.

However, despite the limited success, I don’t think that these results suggest that the incorporation
of syntactic information in the form of dependency trees is not helpful as I chose a very simple
method to incorporate this information. An obvious next step would be to adapt the SPINN model
to dependency trees and to use a composition function similar to the ones by [19] and [18]]. Such
a model could potentially make better use of the syntactic information and therefore lead to more
stable improvements.

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ilan Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] Gabor Angeli and Christopher D. Manning. Naturalli: Natural logic inference for common sense reason-
ing. In EMNLP, 2014.

[3] Samuel R. Bowman. Can recursive neural tensor networks learn logical reasoning? arXiv preprint, 2013.

[4] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing,Lisbon, Portugal, 17-21 September 2015, pages 632—-642, 2015.

[5] Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. A Fast Unified Model for Parsing and Sentence Understanding. arXiv preprint, 2016.

[6] Danqi Chen and Christopher D Manning. A Fast and Accurate Dependency Parser using Neural Networks.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 740-750, 2014.

[7] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long Short-Term Memory-Networks for Machine Read-
ing. arXiv preprint, 2016.

[8] Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D Manning. Universal Stanford Dependencies: A cross-linguistic typology. In
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014),
2014.



(91
(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735—
1780, 1997.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International Con-
ference on Learning Representations, 2015.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. In Advances in Neural Information Processing Systems, pages
3276-3284, 2015.

Bill MacCartney and Christopher D Manning. Natural logic and natural language inference. In Harry
Bunt, Johan Bos, and Stephen Pulman (eds.), Computing Meaning, volume 4, pages 129-147, 2014.

Lili Mou, Men Rui, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. Recognizing Entailment and
Contradiction by Tree-based Convolution. arXiv preprint, 2015.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
Universal Dependencies v1: A multilingual treebank collection. In Proceedings of the 10th International
Conference on Language Resources and Evaluation (LREC 2016), 2016.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word repre-
sentation. In EMNLP, volume 14, pages 1532-1543, 2014.

Tim Rocktidschel, Edward Grefenstette, Karl Moritz Hermann, Tom4as Kocisky, and Phil Blunsom. Rea-
soning about Entailment with Neural Attention. arXiv preprint, 2015.

Sebastian Schuster and Christopher D. Manning. Enhanced English Universal Dependencies: An Im-
proved Representation for Natural Language Understanding Tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation (LREC 2016), 2016.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christopher D. Manning, and Andrew Y. Ng. Grounded
Compositional Semantics for Finding and Describing Images with Sentences. Transactions of the Asso-
ciation for Computational Linguistics, 2(April):207-218, 2014.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic Representations From
Tree-Structured Long Short-Term Memory Networks. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing, pages 1556-1566, 2015.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(2579-2605):85, 2008.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-Embeddings of Images and Lan-
guage. arXiv preprint, 2015.

Shuohang Wang and Jing Jiang. Learning Natural Language Inference with LSTM. NAACL, 2016.



	Introduction
	Task and Data
	Models
	Sentence models
	Implementation and Tuning

	Results and Discussion
	Related Work
	Conclusion and Future Work

