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 4 
1 Abstract 5 

For the average traveler, finding trustworthy hotel reviews online is a tricky task - individual reviews 6 
inevitably suffer from bias, and the highest rated review isn’t necessarily the most informative. Our research 7 
project focuses on modeling how exactly natural language reviews translate to beliefs about hotel quality as 8 
indicated on a 5-point ranking scale. In doing so, we draw inspiration from sentiment analysis, which tackles 9 
a tangential problem. Additionally, we leverage differences in the hotel review setting (such as skewed 10 
rankings, taglines and multiple rankings) to build more accurate classifiers. In all, we analyze the 11 
performance of several approaches (Recursive Neural Networks, Recurrent Neural Networks, Long Short-12 
Term Memory, and Multi-task Deep Learning). Among these, our LSTM model performs the best, with a 13 
classification accuracy of 66.1% (across 5 possible outputs) and a RMSE of only 0.7313. We surmise that the 14 
LSTM achieves this performance above other models by leveraging mean pooling across all tokens in the 15 
sentence, as opposed to weighting importance of tokens by time (Recurrent) or structure (Recursive). 16 

2 Introduction 17 

We are interested in the problem of classifying hotel reviews based on reviews from online users. In this 18 
setting, ratings on a scale of 1-5 are assigned to each of five categories  (“Overall”, “Value”, “Location”, 19 
“Service” and “Cleanliness”) and paired with a corresponding user review in natural language. At first blush, 20 
this problem domain appears to be quite similar to sentiment analysis, since verbal sentiment shares several 21 
parallels with expressing reviews (where low reviews are negative and high reviews are positive). Hence, our 22 
initial approach centers around using proven models from sentiment analysis (like Recursive Neural 23 
Networks). However, analyzing this approach reveals several key differences in our problem space - namely, 24 
that reviews are heavily skewed towards strongly positive, and reviews are often composed as unstructured 25 
paragraphs with grammatical abbreviations and vernacular English. Additionally, our problem space lends 26 
itself uniquely to multi-task learning, as the categories above are often interdependent and can be learned 27 
jointly. In all, we construct the data processing pipeline necessary for preprocessing reviews (such as data 28 
sanitization/filtering, and converting reviews to binary trees using the Stanford Parser) and then implement 29 
and analyze several models, including Recursive Neural Networks, Recurrent Neural Networks, Long Short-30 
Term Memory, and multi-task learning models using both LSTMs and RNNs. 31 

3 Dataset & Baseline 32 

Our dataset is a TripAdvisor review dataset provided in JSON format by UIUC, containing plaintext reviews 33 
with corresponding 5-point labels for each of several categories (Location, Sleep Quality, Rooms, Service, 34 
Value, Cleanliness and Overall). Reviews are each usually several sentences long. We sanitize reviews by 35 
filtering out reviews that are missing categories, or ones that are over 800 characters long. In sum, there are 36 
1,250,059 reviews for 12,000 hotels across the world, before 2011.  37 

Ratings for all categories are heavily skewed towards larger ratings. An example of this for the “Overall” 38 
category is displayed in Fig 1 below: 39 



  40 
Fig 1. Histogram of Overall Ratings    Fig 2. Baseline Accuracies for All Categories 41 

Given the large skew of classes, a strong baseline in this investigation is the argmax of the priors on classes. 42 
Meaning, predicting the most-common class for all sequences achieves the strong baselines for each category 43 
seen in Fig 2 above. 44 

4 Related Work 45 

Our investigation builds on a number of ground-breaking models proposed in the past: Recursive Neural 46 
Networks share weights recursively over sequences modeled as binary trees, allowing them to produce 47 
predictions using information inherent in the structure of sequences. Recurrent Neural Networks form 48 
directed sequences and develop internal states which allow them to model temporal relationships, useful in 49 
language modeling and other tasks. Finally, Long Short Term Memory (LSTM) networks build on the success 50 
of Recurrent Neural Nets with the addition of memory cells, which will be discussed below. Already having 51 
been applied to model sentiment analysis, all three of these models are potentially well-motivated solutions to 52 
the task at hand - their advantages and disadvantages in practice, however, will be discussed below. 53 

5 Models 54 

A. Recursive Neural Network 55 

Since the problem of predicting ratings shares many parallels with sentiment analysis, we first explore proven 56 
methods in the latter domain. Recursive Neural Networks, when applied to sentiment analysis, operate under 57 
the assumption that the sentiment of an overall sentence can be thought of as a recursive composition of the 58 
sentiments of its sub-phrases. A similar (and reasonable) argument can be applied to analyzing natural 59 
language reviews - logical conjunctions such as “but” will often change the entire meaning of a review as 60 
online travelers transition from making qualifying statements to expressing how they feel in reality. 61 

Our model is an extension of the simple one-layer Recursive Neural Network explored in class, but with a 62 
key modification. The standard architecture relies on labeling both sentences and sub-phrases, which is not 63 
applicable to the review prediction scenario, since users express one ranking (per category) for each review. 64 
Hence, during back-propagation, error propagates from only one source (the root node). We confirm (as 65 
shown in the results section below) that taking this approach performs better than applying the same label to 66 
each sub-phrase. 67 

 68 
Fig 3. Depiction of Modified Recursive Neural Net 69 



Our general model-processing pipeline can be split into three stages: 70 

1. Filter out invalid reviews. Our dataset required extensive cleaning, as many data points were either 71 
invalid (i.e. containing blank reviews, missing labels, expressed in a different language) or too 72 
unwieldy to express as a single binary tree. We drop invalid reviews as well as reviews that are over 73 
800 characters long. 74 

2. Construct binary trees based on part-of-speech. We leverage the Stanford Parser to construct 75 
standard parse trees based on the English PCFG, and then binarize them for purposes of our analysis. 76 

3. Perform classification using our Recursive Neural Network architecture. The modified architecture 77 
above is built on top of our assignment in Python. 78 

Directly applying the one-layer architecture as used for sentiment analysis yields a maximum accuracy of 79 
50.9% and a root mean squared error (RMSE) of 1.176 on our dev set, after parameter tuning. By contrast, 80 
our modified architecture achieves an improved accuracy of 56.3% with a RMSE of 0.821 on the same dev 81 
set.  82 

 83 
Fig 4. Confusion Matrix for Recursive Neural Net Predictions 84 

Additionally, as the confusion matrix in Fig 4 above shows, our modified architecture predicts a mixture of 85 
classifications from 1-star labels to 5-star labels, whereas the original Recursive Neural Network exclusively 86 
predicts labels in the 4-star to 5-star range. We surmise that this weakness of the original model is a product 87 
of over-amplifying the dataset skew - most labels are already 4 or 5-star reviews, and applying an identical 88 
label recursively forces most model parameters towards predicting the mode. Although our model suffers less 89 
from this phenomenon, to some extent artifacts exist in our model as well (as evidenced by the fact that our 90 
model never predicts 2-star ratings). Observing the training process confirms our hypothesis, since at fewer 91 
iterations both Recursive Neural Networks initially predict a mixture of all class labels. 92 

 93 
Fig 5. Recursive Neural Net Classification Accuracy over Time 94 

Furthermore, plotting classification accuracy for training and dev sets (Fig 5 above) reveals that the 95 
Recursive Neural Network architecture, when applied to this scenario, does not appear to generalize well. 96 
Training accuracy increases steadily with more iterations, but dev accuracy tops out at around 56% after just 97 
a few training epochs. While this could be a result of the size of the dataset (each set contains roughly 10,000 98 



examples), another plausible explanation is that reviews are not best modeled as trees. The setting of 99 
sentiment analysis typically contains well-labeled, structured data in the form of single sentences. By 100 
contrast, a qualitative examination of our dataset reviews reveals that reviews generally consist of multiple 101 
sentences, often expressed in broken, vernacular English. As a result, the Recursive Neural Net architecture 102 
expresses these reviews as long binary trees that might not be appropriate for training purposes, as child 103 
nodes may not often be logically related to parent nodes in the casual review setting. Due to this problem 104 
(and the amplification of the dataset skew mentioned above), we turn our attention to families of models that 105 
make fewer assumptions about the structure of natural language reviews. One of these models is the 106 
Recurrent Neural Network. 107 

B. Recurrent Neural Network 108 

Recurrent Neural Networks have grown in popularity for use in language modeling and other tasks. In this 109 
paper we examine their use for hotel review modeling. We make a modification (similar to the modification 110 
we made for Recursive Neural Nets) to the network structure to account for the lack of fine-grained labeling, 111 
outputting only a single rating prediction for each sequence. Similarly, using only the rating of each review as 112 
a whole, we back-propagate error across the entire sequence:  113 

 114 
Fig 6. Depiction of Modified Recurrent Neural Net 115 

Note that such a model is particularly prone to long-range interactions. This, combined with the fact that we 116 
do not split sentences (in order to preserve the entirety of information contained in each review during 117 
prediction), means we are left with extremely long sequences with only one label each. The model hence 118 
proves to be extremely difficult to converge, achieving only a 49.20% training set accuracy and 49.74% dev 119 
set accuracy (with 0.001 learning rate and no weight decay). Moreover, no amount of tuning is able to 120 
achieve convergence; we attribute this problem to vanishing or exploding gradients and perform analysis to 121 
prove this point: 122 

 123 
Fig 7. Results of Recurrent Net on Simplified Train Sets 124 

Performing thresholding on the lengths of reviews (in characters), we eliminate all reviews below a certain 125 
threshold and train on the simplified datasets. We filter out reviews of lengths greater than 200, 400, 600, and 126 
800 characters and analyze our hypothesis. In Fig 7 above we see the model is able to achieve improved 127 
results of 57.08% accuracy on the training and 55.70% accuracy on the dev set, with reviews thresholded at 128 
400 characters. This improvement is indicative of problems of vanishing or exploding gradients and long-129 
range interactions inherent in our model.  130 

More concretely, during back-propagation the gradient is being multiplied a large number of times (for each 131 
word in the sequence) by the associated weight matrix, causing the magnitude of the weights to have strong 132 



effects on learning. If the weights are small, this leads to vanishing gradients where the gradient signal 133 
becomes so small such that learning stops altogether. If the weights are large, this leads to exploding 134 
gradients where the gradient signal becomes so large such to cause learning to diverge.  135 

As an initial solution to the problem of exploding gradients discussed above we examine clipping gradients at 136 
a magnitude of 5. The hypothesis is that our huge sequences and large-range interactions will result in 137 
gradients that are too-large, making fine-grained learning impossible. Using the same learning rate and 138 
weight decay parameters as above, we achieve a training accuracy of 53.79% and a dev accuracy of 51.86%, a 139 
distinct improvement over the original attempt on the unfiltered dataset. 140 

C. Long Short Term Memory 141 

The analysis above and initial success of gradient clipping motivates the application of Long Short Term 142 
Memory (LSTM) networks. LSTM networks are Recurrent Neural Networks with the addition of memory 143 
cells - self-contained components that allow the network to learn when to remember and when to forget its 144 
hidden states, amongst other possible outcomes. More concretely, a memory cell has four components: an 145 
input gate, a self-recurrent connection, a forget gate, and an output gate. These four gates could potentially 146 
allow the LSTM to better deal with the long-range interactions present in our problem. Finally, we use an 147 
LSTM architecture with mean pooling, in which all hidden cells are directly aggregated into the Softmax 148 
layer, allowing the network to again better model long-range interactions. 149 

Training an LSTM network in Theano with 128 word embedding dimension, 0 weight decay, and adadelta 150 
optimizer, we achieve the following results: 151 

 152 
Fig 8. LSTM Accuracy Results on Train, Dev, and Test Datasets 153 

Hence, the greatest achieved dev accuracy was 65.21% with a corresponding test accuracy of 65.40% - 154 
significantly improved results over those of the RNN implementation above. Furthermore, we achieve a 155 
RMSE of 0.7313 on the dev set. The corresponding confusion matrices for these results are displayed below: 156 

  157 
Fig 9. Train Confusion Matrix (left) and Dev Confusion Matrix (right) 158 



The model performs relatively well on all labels, especially on extreme rating scores of 1 and 5. It faces some 159 
difficulty for reviews falling in the 2-4 range (especially those scoring 2-stars) on both the training and dev 160 
sets (perhaps indicating that our model reserves guessing 2-stars only for when it is extremely confident that 161 
that is the case). This is similar to the weaknesses of the earlier models we examine, yet indicates that the 162 
LSTM is still capable of learning and predicting accurately despite the dataset skew. 163 

Clearly, the memory cells of the LSTM network are at least partially able to improve the modeling long-range 164 
interactions inherent in the data. Yet with the improved predictive-power of the network comes a new set of 165 
problems: the LSTM model substantially overfits the training set, as evidenced by the large disparity in train 166 
and dev set accuracies. In an attempt to address this problem we add L2 regularization and tune the weight 167 
decay parameter: 168 

 169 
Fig 10. The Effect of Regularization on Train and Dev Accuracy  170 

Surprisingly, introducing regularization does reign in the training accuracy but has no effect on improving the 171 
dev accuracy. In fact, it seems that even a tiny amount of regularization prevents the model from establishing 172 
enough confidence to guess any other label than 5-stars. This may be indicative of the difficulty of 173 
classification in a skewed class scenario, and the challenge in improving the generalizability of the LSTM 174 
model. We attempt to introduce dropout: 175 

  176 
Fig 11. The Effect of Dropout on Train Accuracy (left) and Dev Accuracy (right) 177 

We tune dropout at word embedding sizes of both 128 and 256, since the introduction of dropout often-times 178 
requires larger models. Dropout proposes to address overfitting by randomly dropping units (with probability 179 
0.5) during training. However, the theoretical improvements in performance are not realized: the model 180 
performed better without dropout in all cases, including word embedding sizes of both 128 and 256, and on 181 
both train and dev sets. 182 

In a final attempt to address overfitting we attempt to introduce a significantly larger dataset size. Such a 183 
dataset was not computationally feasible for most of the investigation but is a useful endeavor in addressing 184 
overfitting: 185 



 186 
Fig 11. The Effect of Increased Dataset Size on Train and Dev Accuracies 187 

The larger dataset size significantly reduces overfitting, almost completely diminishing the disparity between 188 
train and dev accuracy. However only slight improvements in the dev and test accuracies are realized: at 189 
66.13% dev accuracy the model achieves a corresponding test set accuracy of 61.80%. This represents the 190 
best dev accuracy result achieved in this investigation. 191 

As an additional exploration, we examine how well the model performs using review titles alone, as opposed 192 
to both review content and title: 193 

 194 
Fig 11. The Performance of the Model Using Only Title Content  195 

In Fig 11 we see the optimal dev accuracy of 61.34% occurs after roughly 7000 iterations, with a 196 
corresponding test set accuracy of 60.60%. Although the model was not able to perform as well using only 197 
the title alone, it is evident that a substantial part of the improvement over the baseline can be attributed to 198 
information gained from the title alone, an interesting result. Moreover, using the title alone also significantly 199 
reduces overfitting, perhaps because the decreased quantity of words used results in a lower potential for 200 
overfitting.  201 

D. Deep Multitask Learning 202 

Another interesting question we explore is the hypothesis that correlated rating categories can be learned in 203 
conjunction with one another. For instance, it is quite possible that reviews that give strongly-positive scores 204 
for “Service” are more likely to also rate highly in terms of “Value”, and that words used to express these 205 
sentiments are overlapping in nature. To approach this question, we turn to the theory of multi-task learning. 206 
In broad strokes, multi-task learning acknowledges relatedness among labels by using a shared representation 207 
of parameters to learn and predict multiple labels simultaneously (instead of training different classifiers 208 
separately). This is especially the case in natural language processing, since we expect many of the earlier 209 
layers to be recognizers for broad patterns present throughout the sequences. Hidden layers and word vectors 210 
will be shared and updated by a sum of errors from multiple labels as opposed to just one. 211 

More concretely, suppose there are C different categories of labels that we would like to learn simultaneously 212 
(C=5 in our example: Overall, Value, Location, Service, Cleanliness). Then, using the Recursive Neural 213 
Network framework as an example, we implement multi-task deep learning as follows. 214 

 Forward propagation is extended as follows: 215 



𝑦 =
𝑦!
⋮
𝑦!

 

where each of C probability vectors is appended together to create one output vector. Each probability vector 216 
is calculated as follows: 217 

𝑦! = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊!
! ℎ + 𝑏!

!  

As seen from the equation above, the weight matrix W and bias vector b vary for each of C label categories, 218 
but the hidden layer (and the parameters used to calculate the hidden layer) are shared as parameters across 219 
all label categories. In our implementation, we append these separate per-category weight matrices and bias 220 
vectors together in order to calculate the output probabilities (of dimension 5 ∙ 𝐶) directly.  221 

Back-propagation is simply modified to include the sum of all errors across the new C-hot truth vector. Our 222 
analysis treats errors from all categories with equal importance, but it would not be difficult to modify this 223 
error sum to be a weighted sum of categories (treating “Overall” with greater importance, for instance). 224 

𝛿 = Σ!!!! 𝑦! − 𝑦!  

We apply multitask learning to extend our Recursive Neural Network model across the five categories 225 
mentioned above, with varying accuracies as depicted below. Performance on the “Overall” category is 226 
comparable to our single-task model, predicting a maximum accuracy of 53% on the dev set. 227 

 228 
Fig 12. Mutli-task RNN Accuracy for Training (left) and Dev (right) 229 

As Fig 12 above indicates, the multi-task classification approach appears to benefit the model learning for the 230 
“Overall” category (in blue) the most strongly, as classification accuracy increases by the most across epochs 231 
for both the training and dev set (the relative differences between lines are due to varying dataset skew). This 232 
would indicate that the “Overall” category is most highly interrelated to the other rankings categories. 233 
Examining the RMSE (which is arguably more informative a metric and less biased by the skew of rating 234 
labels) provides further support for this hypothesis: 235 

 236 
Fig 13. Mutli-task RNN RMSE for Training (left) and Dev (right) 237 

The above graphs show that the RMSE for the “Overall” category (in blue) experiences the greatest decrease 238 
compared across all categories, and reliably remains the lowest as the number of training epochs increases. 239 



Interestingly, the RMSE for the “Location” category (in yellow) also experiences a comparatively large 240 
decrease on the dev set. This could indicate that “Location” is perhaps the ranking most highly correlated to 241 
other rankings. If true, this would be an interesting trend to note, as other categories in theory should not 242 
depend on the location of the hotel. 243 

Similarly, we also hope to extend the results achieved by the LSTM network to the multi-task scenario. We 244 
build on the LSTM network to address classification of all C tasks in the manner discussed above, the results 245 
for which are seen below: 246 

 247 
Fig 14. Mutli-task LSTM Accuracy for Training (left) and Dev (right) 248 

Note that the best average validation accuracy is achieved after about 2600 iterations: 249 
 250 

 Train Dev Test 

Average Accuracy 59.63% 68.91% 57.20% 
Table 1. Mutli-task LSTM Average Accuracy Results 251 

On a more granular basis, we see the following test accuracies for each category: 252 
 253 

 Overall Value Location Service Cleanliness 

LSTM 
Accuracy 

62.40% 47.40% 54.00% 60.00% 62.20% 

Baseline 
Accuracy 

51.40% 44.84% 68.62% 58.47% 60.33% 

Table 2. Mutli-task LSTM Test Accuracy Results for All Categories In Comparison to Baseline  254 

Comparison of the multi-task model’s test set accuracy on the “Overall” rating of 62.40% with LSTM’s prior 255 
result of 65.40% indicates that no substantial improvement was achieved via modeling as a multi-task LSTM 256 
task. Moreover, the model performed better on less-heavily skewed categories (Overall and Value) than on 257 
more-heavily skewed categories (Location), indicating that perhaps the model experienced increased 258 
performance on harder tasks at the expense of easier ones. Therefore, such a method may still be beneficial if 259 
the objective function of the investigation is to optimize the average accuracy of all categories. 260 

6 Conclusions and Future Work 261 

Our work outlines a general framework for analyzing natural language, multi-label online review data. Of the 262 
various models we examine - Recurrent Neural Nets, Recursive Neural Nets, and Long Short-Term Memory - 263 
we find that LSTMs are best suited for the classification task, achieving a maximum classification accuracy 264 
of 66.1% (across a label space of 5 discrete outputs) and an RMSE of 0.7313 (with the maximum error of 4). 265 
Parts of the other two models still perform well, but are less suited for our classification task for a variety of 266 
reasons. Recursive Neural Nets make the strong assumption that language semantics are structured 267 
recursively, which we found not entirely true for casual, abbreviated online reviews that span multiple 268 
sentences. Meanwhile, Recurrent Neural Nets suffer from long-range interactions and exploding gradients for 269 
long sequences of reviews. We also analyzed both LSTM and the Recursive Neural Net models with multi-270 
task learning and find that strong correlations across labels do exist. With respect to multi-task learning, we 271 
find that while overall accuracy is not improved, accuracy on harder tasks (i.e. less skewed categories) is 272 



improved at the cost of accuracy on easier tasks. This actually posits multi-task learning as an effective 273 
strategy for learning against skewed datasets. Lastly, we learn on simply review titles alone using our best 274 
model (the LSTM) and find that these titles also hold surprising power in predicting rating. 275 

 276 

Further work for our project will involve applying the (relatively reliable) models we have implemented to 277 
answer pertinent questions about online reviews. For instance, we would like to consider how reviews vary 278 
across geography, time and price range. Does a model trained on reviews from the United States have 279 
predictive power in classifying reviews from the UK? How does the price range of the hotel influence how 280 
predictable reviews for the “Value” category are? Given our work in choosing and tuning models to 281 
accurately predict hotel reviews, we are interested in turning our attention towards queries about natural 282 
language that can arguably only be tackled using statistical machine learning. 283 
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