Ask Me Even More: Dynamic Memory Tensor Networks

(Extended Model)

Ajay Sohmshetty Govardana Sachithanandam Ramachandran
Department of Computer Science Department of Computer Science
Stanford University Stanford University
ajayl4@stanford.edu rgsachin@stanford.edu

Abstract

We examine the current state-of-the-art memory network, the Dynamic Memory
Network (DMN), under a weakly supervised learning approach, and implement
DMN:ss for the task of question answering (QA). We propose several extensions
for the DMN, specifically within the attention mechanism and the answer
module. We also explore the application of DMNs to a new and relatively
untested multiple choice dataset, Microsoft’s MCTest dataset. Ultimately, we
see that our proposed extensions result in improved performance on Facebook’s
bAbI dataset when baselined against the standard DMN and the End-to-End

Memory Network.

1 Introduction

Wielding the ability to answer open ended questions, an effective question answering (QA) system
can be incredibly powerful, as many tasks in natural language processing can be modelled into QA
problems. Currently, several state-of-the-art memory networks exist for QA. Specifically,
Dynamic Memory Networks (DMNs), NeuralReasoners, and End-to-End Neural Networks have
all been applied to this task all with reasonable degrees of success. We will focus on the
application of DMNs to this task, while relegating End-to-End Neural Networks as a baseline
exploration. We implement and extend the DMN architecture as described in the sections below.
We also explore the application of DMNs to a new and untested challenge dataset, MCTest.

2 Datasets

Given a series of input statements, interspersed with open-ended
questions, our task is to produce an answer corresponding to each
question at every respective point in time. We apply two datasets to
this task.

2.1 Facebook’s babl Dataset

We are using Facebook’s babl dataset for this task. This dataset is
comprised of 20 different reading comprehension tasks, shown in
Table 1, designed to measure understanding [5]. For each task, we
have 10k training examples; the following is an example data point
for the “Two Supporting Facts” task:

1 Mary got the milk there.

2 John moved to the bedroom.

3 Sandra went back to the kitchen.
4 Mary travelled to the hallway.

Tasks

single-supporting-fact

two-supporting-facts

three-supporting-facts

two-arg-relations

three-arg-relations

yes-no-questions

counting

lists-sets

wlce [Nk |w|n|-

simple-negation

=
o

indefinite-knowledge

basic-coreference

12

conjunction

13

compound-coreference

14

time-reasoning

15

basic-deduction

16

basic-induction

ik

~

positional-reasoning

18

size-reasoning

1

o

path-finding

20

agents-motivations

Table:1

5 Where is the milk? hallway 14
6 John got the football there.

7 John went to the hallway.

8 Where is the football? hallway 6 7

Perhaps the most interesting artifact about this dataset is that it is a synthetic dataset; it is machine
generated. Therefore, it is subject to overfitting, and generalizability may be of concern, though it
is a sizeable dataset.

2.2 Microsoft’s Machine Challenge Test (MCTest)

On the other hand, Microsoft’s MCTest dataset consists of 500 open-domain, yet carefully
restricted, stories with 2000 associated questions. The main feature of this dataset is that each
question has four multiple choice answers, with each question is annotated with the number of
sentences dependencies required to formulate the answer. While the babl is a synthetic dataset,
MCTest is an organic dataset, mechanically turked to ensure reliability.

3 Related Work

3.1 End-To-End Memory Networks

Memory networks (MemNN) by Weston, Jason et al[6] introduces the concept of using long-term
memory component and inference components for reasoning tasks. An extension to this model is
End-To-End Memory Networks MemN2N) by Sukhbaatar, S et al[7], it extends MemNN to be
trained end-to-end, that is, it is weakly supervised. The model uses attention mechanism and
cycles over the inputs with multiple computational steps -- or “hops” -- before it outputs answer.
The model is continuous hence making it trainable end-end by back propagation. The model has
following three modules.

Input Memory Module: Given a set of inputs x, ... x,, a transformation matrix 4 is used to
convert each of the inputs to corresponding distributed representation {m} of dimension d. Similar
transformation is done for the query g which is transformed to u by another matrix B. In the
embedded space input # and query u are matched using softmax

p; = Softmax(u’m,)
Output Memory Module: The inputs have an output vector representation as well ¢; generated by
another embedding matrix C. The output memory vector is given by

0= Zpici
1
where p, is the probability vector from the input.

Prediction: The output labels are predicted by a softmax on the sum of output memory vector and

query vector
a = Softmax(W(o+u))

These 3 modules, constitutes a single hop on the input data, multiple hops are achieved by passing
sum of input and output memory vector as in the input vector for the subsequent hop

W =1k 4ok

]
D

Santonces
o éﬂ:::::::::ﬁ?
H

(a))

Figure 1: (a): A single layer version of MemN2N. (b): Three hops variant of MemN2N

3.2 Dynamic Memory Networks (DMNs)

Dynamic Memory Networks, introduced by Ankit Kumar et al., contain four main modules: an
input module, a question module, an episodic memory module; and finally an answer module [3].
We provide a brief overview of the main modules and redirect the reader to the full paper for the
full details [3].

Episodic Memoryel 5 4 5 5 5 5 3 Answer module
} f 5 Y
Module 0.0 03 0.0 00 00

s) s 5
. . X X X 109 0.0 00 gm
1 >
2 F
1 b & 1 1 1 1 1 1 S
e, e, e, e, e (A e, e, &
03 0.0 0.0 0.0 0.0 0.0 i d & &

P
1 |

I
Input Module s, 5, s, s, s, \53 5 s, Question Module ¢
W, @ & o 5 » - - o e &
RN & & SRS S S & &
& E) & @ N ' o & ey
& & 52 & 57 57 5 °
& &5 © 7 <5 & & &8 &S
CY & & X & & & &
) K
« Q&o ;‘é{” *61’4 (\e@ R S @Q\) \\@d
E O $

Figure 2: Overview of DMN

Input Module: The input module is designed to encode inputs into distributed word vector
representations. Given a sequence of words, where each word is converted into vector
representations using GloVe, we encode the input sequence through a gated recurrent network
(GRU). For cases where there are multiple sentences in the input, we insert end-of-sentence tokens
after each sentence, allowing the network to process lists of sentences. We then store each
memory, through vector representations, for future reference by the episodic memory module.

Question Module: The question module also encodes question inputs into vector representations
using the same GRU RNN as in the input module, but instead for feeding as the initial state into
the episodic memory module.

Episodic Memory Module: The episodic memory module, through an attention mechanism
identifies memories that are relevant and iterates through stored inputs to form an answer vector.
This module receives the question vector representation from the question module, and sets that as
the initial state into a modified GRU RNN.

Answer Module: The answer module converts the final state produced by the episodic memory
module into a tokenized answer, using, again, a GRU RNN.

4 Dynamic Memory Tensor Networks - Extended Model

4.1 Attention Mechanism

The current DMN uses a gating function for attention mechanism. At each pass i, the mechanism
takes as input a candidate fact c,, a previous memory m*/, and the question ¢ to compute a gate:

8= Glc,m™.q)

where, the scoring function G takes a feature vector of handcrafted similarity measures, and
returns a gate score:
2(e,m,q) = [e,m,q,coq,com,|c—q|,|c—m|,cTWOq, TWOm)
G(c,m,q)=o(W(z)tanh(W(l)z(c, m,q)+ b(l)) +p?

Figure 3: Attention Mechanism for DMN

The scoring function is used as gate retention weights for the computing the episode of each pass
of the input. Where episode in each pass is represented as
e =M,
S , o
hy=g,GRU(c;, hi-y) + (1= g) by
Neural Tensor Network (NTN) for Attention Mechanism: Form the neural architecture, it is
clear that attention Mechanism is key for the performance of the system. Currently handcrafted
similarity measure are used as feature vector for scoring, we propose mechanism to let the Neural

Network craft the similarity measure, We propose the use of Neural Tensor Network [9] for this
purpose. The scoring function now will be of the form

G(e,m,q) = o(W® tanh((c" W[Rl:k] qym’ + cTW[C},:k] q +mTW[,,1,,}k] g +cTWILH py + Vele gm]™ +bp) +b@)
[l'k] d xd xd <k . .
Where, W e R represent the three way relationship tensor between (c,m,q).
. . . d xd xk
Wc[,(ll'k], WEl,,',k], W,[,}qk]a R represents two way relationship tensor between a pair of entries

kx3d
€ {c,m,q} . The other relationship R, parameters are V' z& R and bge R k.

In our experiment, we found having three way relationship helps but due to constraints of
resources (GPU) and time taken for convergence and hyper parameter tuning -- dropout on

weights Wl[elzk] -- and regularization, In our final experiments we have dropped three way
relationship, that is reducing the scoring function to:
Gle,m,q) = o(W? tanh(cTWE]:k] q +mTW[,,17;1k] g+ W m+V o[c g m]T +bg) +bP)

4.1.1 Encapsulating Models

NTN covers wide range of similarity score, Given entities e, and e,, if there exist R relationship
between them the NTN scoring function g(e,Re,) covers the following similarity functions.

Distance Model: The distance cores builds relationship by mapping the left and right entities to a
common space using a relationship specific mapping matrix and measuring the L1 distance
between the two. The scoring function

g(F1. R FQ) - HHvR:lffl = IIYR_Q\‘,QH:[

d xd xd .
WrisWroelR are the parameters of the relation R .

Single Layer Model: Compare to the first function, single layer neural network adds nonlinearity.

The scoring function has the following form:

g((:'l‘ R, (‘2) = u"};;f (”}2_1(‘1 i IIVR_QEQ) = u.gf ([U'vaﬂvpvg] [iﬂ)

d xd xd dx1 .
where, f'=tanh, Wy, Wp,eR and b,,b,eR are the parameters of the relation.

Hadamard Model: The model tackles the issue of weak entity vector interaction through multiple
matrix products followed by Hadamard products,The scoring function has the following form:

g(e1, R,ea) = (Wier @ Wrarier + b1)" (Waez ® Wrer2er + ba)
where W, W11, Wo, W,e0 € R and by, by e R

Bilinear Model: Captures weak entity vector interaction through a relation-specific bilinear form.
The scoring function is as follows:

gler, R, e2) = eI Wges

dxd . . .
where WyeR™ , the parameter of relation R ’s scoring function.

4.1.2 Extended - Neural Tensor Network

In order to increase the expressibility, we experimented with another form scoring function with

promising results, here we define z=/c,m,q],and attention gate scoring function is of the form
Gle,m,q) = oW tanh(ZWEN z +V 22T +bp) +bP)

Linear Slices of Standard Bias
Layer Tensor Layer Layer

I 888 [00000
QQ o
fllo___ee = | + |o000600 + B

r |
|@8® [o00 @ e
°

4

i-l":}mn':'(zT [['Ll'“ z + Vg zT +bg)

Figure 4: Illustration of Extended-NTN
3d x3d xk

Here Wg:k] eR , and we see the number of parameter reduced without losing the covered
similarity function.

4.2 Answer Module Extension

We also propose an extension for the answer module, beneficial especially for the case of
generating long answers. In the standard answer module GRU RNN, we compute

Yyt = softmazx (W(“)at)

ar = GRU ([yt-1, 4], ar-1)
given input question g, last hidden state a!, previously predicted output */. We propose an
extension for this model to also incorporate the final episodic memory from the previous module

mMu to improve performance of the model on questions that require long answers:

Yy = softmax (W(“)at)

at = GRU ([y-1,¢,m™] ,a1-1)

¥ - :r].- v X, //y.._ i
| |

A A

Figure S: Visualization of Answer Module, before and after passing last episodic memory to each
of the answer RNN

4.3 Handling Multiple Choice Questions

The answer module in its original introduction does not handle multiple choice questions; We
again use additional Neural Tensor Network layer to further amend our answer module:

A

k= arg max; y,
¥, = Softmax(Wtanh(o W' Pa, + V7T [0 a,]T-i- b)+ b%)
a= GRU(D’[*I’ q, mTM]s azfl)

where o is the vector embedding of each answer option (can be produced from input module for
multiple word answers), Wik e pK>hx ", w is the embedding size, and K is the number of
answer choices. Thus, in effect, we capture the similarity between the last hidden state and the
answer choices across K options, and since the entire model is end-to-end differentiable, we will
eventually train our weight tensor to predict the correct choice among the given options.

Generalizability: This model is generalizable; if we did not have multiple choice answers, we
could instead feed in the entire vocabulary for o’, producing probability distributions across the
entire vocabulary, and choose the word corresponding to the highest probability at each time step.

5 Experiments

5.1 Metrics

As done in other models in the Q&A problem space — MemNN, DMN, etc.— we use accuracy for
gauging the performance of the model. We define a task as passed when test accuracy is >95% .

5.2 Results

We weakly trained (i.e. without supporting facts feedback) DMN and DMTN on the 1K bAbi
dataset. To measure the lift from DMN to DMNT-EM, we chose the same hyperparameters across
all of our compared tasks to be the same and between DMN and DMTN-EM. In our reported
results, due to constraints on resources (GPU) and time taken for convergence and hyper
parameter tuning we restrict to our results to 2-way tensor relationship. For simplicity in our final
bAbi experiment results, we used feed forward NN as answer module. MemN2N with Positional
Encoding (PE) + Linear Start (LS) + Random empty memory (RN) is the current state-of-the-art
(SOTA) for a weakly-trained single bAbi task [7] and we compare number of task passed by
DMTN-EM against the SOTA.

DMTN |
Hidden Layer Dimension 40
Tensor Relationship Slice 40
Memory Hops 5
Random Dropout
Embedding size 50
Epoch 150
L2 |0.0001 / 0.0003,

loration on T

Model Test Acc

Random 25%
Baseline1: Sliding Window (SW) 54.28%
Baseline2 + RTE 63.33%
Baseline DMN on MCTest dataset without answer module extension 11.33%
Baseline DMN on MCTest with answer module extension on single word answers 38.10%
Baseline DMN on MCTest with answer module extension on full dataset 31.00%
29.50%

Improved DTMN-EM on MCTest with answer module extension on full dataset

Table 2: (left) Hyperparameters used for DMTN-EM. Table 3: (right) Exploration on MCTest500

Input

Bill grabbed the apple there.
Bill travelied to the bedroom.
Fred moved to the garden.
Fred moved to the office.
Mary picked up the milk there,
Bill discarded the apple.

Mary left the milk.

Jeff went to the office.

Mary got the milk there.

Bill travelled to the office.

Jeff went back to the bathroom.

Mary passed the milk to Jeff.
Jeff passed the milk to Mary.
Mary put down the milk there.

Question

What did Jeff give to Mary

Answer
milk

(a)

(no regularization)

™

Episode
Fact 1 2 3 4 5
Bl grabbed the 035
apple there
Biltravelled tothe 024 033 035 034 033
bedmom

Fred moved to 007 019 024 026 026
the garden

Fred moved to 006 019 026 028 027
the office

Mary picked up

the milk there

Bil discarded the
apple

worrace ’.-

002 002 003 003 004

Jeff went to the
office

Mary got the mik

there

Bil travelied to the | 0,51
office]

Jeffwentbackte 002 002 003 003 003
the bathroom

002 002 002 002 002

Mary passed the
milk to Jeff

Figure 6: (a): Is the input, question and the answer return by DMTN-EM model. (b) is heat map of
the gate weight on the attentions mechanism for each of the input fact for each of five hops.

Al task joint -
weakly trained
Single task weakly trained (1K data) (20 x 1K data)
Published SOTA
MemN2N with |MemN2N with
|Tasks DMN best®* |DMN baseline | DMTN PELS.RN PELS.RN
1|single-supporting-fact 100 100 100] 100 99.9
2|two-supporting-facts 327 1293 353 517 812
3 |three-supporting-facts 263 32 35 59.7 88.3
4|two-arg-relations 238 821 100 97.2 828
5 |three-arg-relations 975 976 973 86.9 87.1
6| ves-no-questions 963 965 96.5 92.4 98 |
7|counting 203 776 201 82.7 9.9 -
8 | lists-sets 756 585 583 50 53.3
3| simple-negation 34.1 35 553 86.8 38.5
10| indefinite-knowledze 95 902 932 84.9 97.4
11 |basic-coreference L 100 714 99.8 99.1 96.7 1 From —
12| conjuncrion 100 672 595 998 100]
13 |compound-coreferance 394 315 344 395 59.5
14| time-reasoning 716 747 73 58.3 38
15| basic-deduction &7 505 599 100 98.2
16| basic-induction 48.1 448 464 987 43
17 | positional-reasoning 659 52 §2.7 48 57.4
18 |size-reasoning 337 515 558 8.9 0.8
13| path-finding [107 8.2 ‘g3 172 9.4
20| agents-mativations 38.1 375 582 100 39.8
Average accuracy 77.205 725 80.63 B6.145 84.775 —
passed task {acc>=95%) 7] 6 11| 9 10

Table 4: (left) Accuracies across all tasks for MemN2N, DMN, and DMTN. Figure 7: (right)
Train and Dev Loss and Accuracy vs Epoch for Task:1

53 Analysis

Overall the performance of the DMTN is considerably better than standard DMN in all the tasks.
Note that we performed very minimal hyperparamater tuning. DMTN-EM clearly outperforms --
in number of tasks passed -- the SOTA MemN2N-PE,LS,RN both single task trained (1K) and
jointly trained (20 x 1K) variants.

For the tasks DMTN fails, we believe that they are limitation of other modules of DMN. Ex: Tasks
2, 3 performance are curtailed by the limited positional embedding, which plays significant role in
SOTA [7]. Virtually every other task in general will perform better when Linear Start (LS) and
Random Empty Memory (RN) are introduced [7].

6 Conclusion and Future Work

Under the weakly supervised environment, the DTMN-EM clearly outperforms the SOTA, which
is memN2N with PE,.LS,RN as well as show clear and significant lift from the standard DMN
results on the bAbi dataset in the number of tasks passed. Running on the single word answer
MCTest500 dataset, the standard DMN performs better than the random model, so it seems
generalizable to this application, although we were not able to achieve state-of-the-art network
performance.

Future work: For facts based tasks, with longer sentences, implementing a Tree-RNN based
sentence representation for better positional embedding may improve the accuracy of the model,
especially for tasks 2 and 3. There is also a lot of scope for hyperparameter tuning to further
outperform standard DMN and SOTA-MemN2N, as is very evident in convergence plots. Adding
3-way relationship tensor with dropout on Tensor weights W}[a1 *1 showed considerable promise. In
addition, the use of a choice based answer model for the path finding task: 19 would further
improve accuracy since there are only a finite number directions the output can take. The use of
LS and RN should improve the performance across the tasks, and we should implement these to
benchmark these improvements against the current SOTA. On the MCTest dataset, we observed
significant overfitting, adding regularization and adjusting hyperparameters could alleviate this
and drive up the accuracy.

7 References

[1] Sukhbaatar, Sainbayar, et al. "Weakly supervised memory networks." arXiv preprint arXiv:1503.08895
(2015).

[2] Weston, J., Chopra, S., and Bordes, A. Memory networks. In ICLR, 2015b.

[3] Kumar, Ankit, et al. "Ask me anything: Dynamic memory networks for natural language processing."
arXiv preprint arXiv:1506.07285 (2015).

[4] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint
arXiv:1412.6980 (2014).

[5] Weston, Jason, et al. "Towards ai-complete question answering: A set of prerequisite toy tasks." arXiv
preprint arXiv:1502.05698 (2015).

[6] Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks."arXiv preprint arXiv:1410.3916
(2014)

[7] Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. "End-to-end memory networks." Advances in
Neural Information Processing Systems. 2015..

[8] I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. Modelling relational data using Bayesian clustered
tensor factorization. In NIPS, 2009.

[9] Socher, Richard, et al. "Reasoning with neural tensor networks for knowledge base completion."
Advances in Neural Information Processing Systems. 2013.

