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Abstract 

Wikification(entity annotation) is one of challenging NLP tasks. 
In this project, we built an end-to-end system to annotate 
document with wiki links. At first we implemented baseline 
model with LESK algorithm/Bayesian model. Then we applied 
Siamese neural network in this model, it improves similarity 
accuracy a lot, meanwhile it improves annotation precision 
from 84% to 88%. 
 

1 Introduction 
Nowadays, people usually links text to Wikipedia link at webpage so that readers could get 
extra information from Wikipedia, meanwhile publishers don’t need to supply background 
information. In natural language processing, this is called entity disambiguation, entity 
linking or entity annotation. It’s a fundamental component for understanding text 
semantically since natural language by nature is ambiguous. Linking text to wiki entity is 
aimed to eliminate wording disambiguation, also this is also good moving from unstructured 
words to structured/semi-structured data. E.g. for a sentence  

“One-night President Obama and his wife Michelle decided to do something out of routine 
and go for a casual dinner at a restaurant that wasn’t too luxurious” 

We will link “President Obama” to US president “Barack Obama”, “Michelle” to “Michelle 
Obama”, also since we know the underground entities, by looking up freebase, we know 
“Barack Obama’s wife is “Michelle Obama”, we may also link wife to “Michelle Obama”. 

This is very attractive since we could understand real entity of text and even also extend 
more information from entities’ relationship/properties. But entity disambiguation is very 
challenging problem, it’s mainly due to following issues: 

Words/phrases in different contexts show different meanings(senses) or link to different 
entities. E.g. “I like apple.” “apple” could be linked to “Apple Inc.” or apple fruit. Correctly 
identify different contexts is the key to link correct entity to text. 

One entity could be linked to different aliases, e.g. Microsoft has aliases like MSFT, MS, 
etc. It’s not easy to know all those aliases, if considering different languages, it’s much more 
difficult. 

In this project, I plan to implement one baseline model purely based on unsupervised 
learning/statistical model. In original plan I was going to train a LSTM model which 
consider wiki link annotation as a translation problem, but when I started working on it, I 
realized this is not a doable project since English wiki entities are more than 7M, it’s 
impossible to load so large vocab into LSTM model, so I switch to training a Siamese 
Network to improve baseline model’s core component. 



 
2 Background and related work 
There are lots of research papers in this area, [1][2] use lesk algorithm which considers wiki 
page as dictionary gloss, words in the same sentence as context, so wiki pages which share 
biggest overlap with context would be linked to the text. [1][2][3] also implemented 
supervised word disambiguation system, which extract features like surrounding words and 
their POS tags in a context window, co-occurred words in the same sentence, local 
collocations which are common expressions containing the word to be disambiguated, and 
also the verb and noun before and after the ambiguous word. [1] also merge two methods by 
some voting mechanism. 

[4] defines commonness(number of times the text is used as a destination in Wiki) and 
relatedness(semantic similarity between two wiki pages, by comparing their 
incoming/outgoing links). The disambiguation process is trying to balance commonness and 
relatedness.Besides commonness and relatedness, [5] also introduces text/entity 
compatibility score, redefine relatedness as entity coherence to model compatibility across 
entities, then optimize a model to balance between local/global optimality. [6] built a system 
named TAGME, which annotates short texts with wiki links.For each phrase, TAGME 
defines collective agreement between one of its possible entity and all possible entities of 
other phrases, collective agreement is still based on relatedness and commonness under the 
hood.[7][8] proposed some graph-based algorithm to solve WSD and entity linking.  
 
 
3 Approach and Models  
 
3 .1  Basel ine model  
With LESK algorithm, we consider each wiki page as dictionary gloss, words in annotating 
document as context, so for each n-gram in document, we will annotate it with the wiki page 
which shares biggest overlap with current document. We combine this algorithm with 
Bayesian model to build a baseline model. 
3.1.1 Model  description 
𝑏𝑒𝑠𝑡𝑙𝑖𝑛𝑘 = max

-./0
𝑝 𝑙𝑖𝑛𝑘 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑡𝑒𝑥𝑡  

Where context is sentences/words around the text we are going to annotate with wiki link. If 
we assume context and text are independent, (this is usually not true, to make computation 
simple, we make this assumption here), so we have 

𝑝 𝑙𝑖𝑛𝑘 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑡𝑒𝑥𝑡 = 6 78/9:;9 -./0 6(9:;9|-./0 6(-./0)
6 78/9:;9,9:;9
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𝑝(𝑙𝑖𝑛𝑘|𝑡𝑒𝑥𝑡) could be easily calculated as  

𝑝 𝑙𝑖𝑛𝑘 𝑡𝑒𝑥𝑡 =
𝑑𝑜𝑐_𝑐𝑜𝑢𝑛𝑡(𝑙𝑖𝑛𝑘, 𝑡𝑒𝑥𝑡)
𝑑𝑜𝑐_𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑥𝑡)

 

where 𝑑𝑜𝑐_𝑐𝑜𝑢𝑛𝑡 𝑙𝑖𝑛𝑘, 𝑡𝑒𝑥𝑡 	 is number of documents, text is labeled by the link, 
𝑑𝑜𝑐_𝑐𝑜𝑢𝑛𝑡 𝑡𝑒𝑥𝑡  is number of documents contain the text. 

For 𝑝(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑙𝑖𝑛𝑘), we may model it as a norm distribution for a given link,  

𝑝 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑖𝑛𝑘 =
1

𝜎 2𝜋
𝑒G	
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where 𝑑𝑖𝑠𝑡 = 1 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	 	𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑙𝑖𝑛𝑘 	∈ [0,1], 𝜎 = 𝑣𝑎𝑟(𝑑𝑖𝑠𝑡) is calculated over all 
contextual texts we found in Wikipedia pages for a given wiki links, in our experiment the 
contextual sentence window is 1. 



To calculate 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	(𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑙𝑖𝑛𝑘), for each wiki link, we extract outgoing anchors from 
its own wiki page, look up word vector for each word in these anchor texts, average all these 
word vectors as this wiki link’s embedding vector. The reason we do so is that usually 
anchors in wiki page are highly related with the wiki page’s main topic, could represent the 
wiki page well. 

We also average word vector for all words in the context, but we weight each word by 
𝑤𝑒𝑖𝑔ℎ𝑡 = Z[\]^

Z_
, where 𝐷-./0is number of document where the word is in anchor text, 𝐷a is 

number of document where the word is occurred. This way we could reduce impact of the 
words are not frequently occurred in anchor text, here we hold the same assumption, words 
in anchor text would be more representative. 

Finally 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑙𝑖𝑛𝑘  is calculated by cosine similarity of two average vectors. 
And now the criterial to select best link is like this 

𝑏𝑒𝑠𝑡𝑙𝑖𝑛𝑘 = max
-./0

𝑝(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑙𝑖𝑛𝑘)abc]defd𝑝(𝑙𝑖𝑛𝑘|𝑡𝑒𝑥𝑡)agh\ch 

where 𝑤78/9:;9, 𝑤6i.8i ∈ 0,1  and 𝑤78/9:;9 + 𝑤6i.8i = 1, they are here for balancing impact 
of prior knowledge/context over final decision, in our experiment. 

 
3.1.2 Final  algorithm 
The final algorithm is implemented like this 

1. For each document, break down it into sentences. 
2. For each sentence 𝑆(𝑖), create a context window 𝐶 = {𝑆 𝑖 − 𝑐 , . . 𝑆 𝑖 − 1 , 𝑆[𝑖 +

1]	… 𝑆[𝑖 + 𝑐]} 
a. Extract n-grams from 𝑆[𝑖], 𝑛 = 1, . . , 𝑙𝑒𝑛(𝑆 𝑖 ) 
b. Lookup each n-gram in anchor text dictionary, if there is no corresponding 

entry, drop it. Otherwise keep it and its all possible corresponding wiki 
links as potential candidates. 

c. For each remaining n-gram, at first we remove words in n-gram from its 
context window, then select best link as we described in 3.1.1, here 
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝐶	 ∪ 	𝑆(𝑖) (words in n-gram are also removed from 𝑆(𝑖)), and 
also store the best link’s score. So after this step, for each n-gram, we keep 
only one wiki link for it. 

d. At this step, we resolve overlapped n-grams by maximizing likelihood 
𝐿 = 𝑝(𝑙𝑖𝑛𝑘|𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑡𝑒𝑥𝑡) over the whole sentence: 
𝐿 𝑖 = max

s
𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 ∗ 𝐿(𝑝𝑟𝑒(𝑗)) where 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) is score of j-th ngram 

which ends at i-th word(named as 𝑛𝑔𝑟𝑎𝑚(𝑖, 𝑗), more than one ngram may 
end at i-th word), 𝑝𝑟𝑒 𝑗  is word index of nearest forward n-gram which is 
not overlapped with 𝑛𝑔𝑟𝑎𝑚(𝑖, 𝑗), 𝐿 𝑖  is largest likelihood ends at i-th 
word.  

  So finally in each sentence, we assign wiki links to non-overlapped n-grams, each is 
attached with an annotation score. We could set some threshold to filter unconfident 
annotation. 

3.2 LSTM model/seq2seq model  
My initial plan was train a LSTM model which could translate text to entities, I expect 
LSTM model may capture contextual information better. But in real practice, I found this is 
not doable, given following reasons: 

• Number of entity is far more than number of words, e.g. there are more than 7M   
English entities. It’s impossible to load such a large vocab into LSTM model, at 
least till now I can’t figure out a way to do so. 

• I may reduce vocab by filter not frequent entities, or split entities to words(so that 
we learn translation model between raw text and wiki link at word level), but this 
would reduce coverage/precision a lot, it’s hopeless to beat baseline model.  



Based on these 2 reasons, I switch to improving base line model with Siamese network. 

3.3 Siamese network 
In baseline model, the key component is 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	 	𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑙𝑖𝑛𝑘 , in some cases, we 
underestimate this similarity, so that link is wrongly annotated as mostly frequent wiki link. 
There are a few things we may tune to improve precision: 

1. Better prior weight, with proper weight we could reduce prior probability’s impact 
over final decision. 

2. Better features for calculating similarity, in baseline model we simply average 
selected words’ embedding vector as features. 

3. Better way to calculate similarity, in baseline model, we simply apply cosine 
similarity over feature vectors. 

We decide to find a better way to calculate similarity between textual context and wiki links, 
while keep other parts as the same with baseline model. As [11] suggested, we built 
following neural network to better model context/wiki link similarity: 

 
Figure 1 Siamese network 

where  
ℎ78/9:;9 = 𝜎 𝑣78/9:;9𝑊 + 𝑏 	

ℎ/:wG-./0 = 𝜎 𝑣/:wG-./0𝑊 + 𝑏 	

ℎ68IG-./0 = 𝜎 𝑣68IG-./0𝑊 + 𝑏 	

𝑠𝑖𝑚68I =
ℎ78/9:;9 ∙ ℎ68IG-./0
ℎ78/9:;9 ℎ68IG-./0

	

𝑠𝑖𝑚/:w =
ℎ78/9:;9 ∙ ℎ/:wG-./0
ℎ78/9:;9 ℎ/:wG-./0

	

𝑙𝑜𝑠𝑠 = log	(1 + 𝑒G|(I.}gc~GI.}]e�)) 

𝑣78/9:;9 𝑣68IG-./0 𝑣/:wG-./0 ∈ 𝑅�×/ , they are embedding vectors of contextual 
text/correct/incorrect wiki links of the text. 𝑊 ∈ 𝑅/×}, 𝑏 ∈ 𝑅�×},	ℎ68IG-./0 ℎ/:wG-./0 
ℎ78/9:;9G-./0 ∈ 𝑅�×}. 𝑛 is embedding vector size, 𝑚 is hidden layer size. 𝜎 is sigmoid 
function, 𝜆 is the weight to scale difference between 𝑠𝑖𝑚68I	𝑎𝑛𝑑	𝑠𝑖𝑚/:w. 

loss
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By minimizing 𝑙𝑜𝑠𝑠, we will make correct wiki links yield higher similarity score than 
incorrect wiki links. 

 
4 Experiment 
4.1 Training Data  
We downloaded Wikipedia dump on May 8th 2016, only keep English wiki pages, filtered out 
disambiguation/list/redirection pages. For both baseline model and Siamese Network based 
model, we preprocess data as following steps: 

1. Inside each page, outgoing wiki anchors are extracted, with those anchors, we build 
a table which maps anchor texts to wiki links, this table is used to calculate 
𝑝(𝑙𝑖𝑛𝑘|𝑡𝑒𝑥𝑡), and also acts as dictionary during annotation process.  

2. We also create a table maps wiki link to outgoing links from its own page, this table 
acts as wiki link’s dictionary gloss.  

3. Create a table to map Wikipedia link to its redirection destination Wikipedia page 
URL, this is useful in evaluation since some wiki links in evaluation data set are 
redirection pages. 

4. Also we create another table to map each wiki link to its similarity variance. 
5. Finally we create a table to map each word to its link weight Z[\]^

Z_
. 

For Siamese Network based mode, we prepare training samples this way: 
1. For each Wikipedia page, break document into a few sentences. 
2. For each sentence, pick up previous/next sentence as contextual text, then iterate 

each link inside the sentence: 
a. Merge words in contextual text and current sentence as context, remove 

words in link text from context. 
b. Generate average embedding vector for context and current link (correct 

link) as we described in 3.1.1, we also look up link text in dictionary, so 
that we could get other candidate links for the link text, we call these links 
as incorrect links, embedding vectors are also generated for these links.  

c. Calculate similarity between context and correct/incorrect links. 
d. Generate following examples for current link 

i. {correct link, context, top incorrect link}, top incorrect link is the 
incorrect one with highest score. If {correct link, context} 
similarity score > {top incorrect link, context} score, it’s a positive 
example, otherwise it’s a negative example. 

ii. random sample a few {correct link, context, non-top incorrect 
link}, they could be either positive or negative example. 

3. Finally, we sample 1M training examples, 40K dev examples, 40K testing examples, 
in this sampled dataset, by apply cosine similarity, the precision would be 63%. 

 
4 .2  Evaluation Data 
There are a few data sets available for evaluation: 

1. Wiki-disamb30 and Wiki-annot30 in [6] 
2. IITB dataset in [5] 
3. ERD-14 challenge data set, which is annotated by freebase id. 
4. Annotated web pages in [10] 

 
2 and 4 are annotated by one or two people manually, the results are subjective and biased, 
since when people label webpages, they usually choose annotate text they are familiar with, 
or for unknown terms, they do short research to make decision, this is sometime error-prone 
especially for some professional term or not famous person. Wiki data is edited by lots of 
people, it’s much cleaner, so I finally choose wiki-annot30 as my evaluation data set. Wiki-
Annot30 contains a list of 186K Wikipedia page fragments, which are drawn from Wikipedia 
snapshot of November 6, 2009. Fragments are composed by about 30 words, and they 
contain about 20 non-stopword on average. I filtered text contained in wiki-annot30 from my 



wiki training data, since wiki-annot30 was snapshotted 6 years ago, lots of texts are changed 
a lot after that, it’s not easy to filter all of them, there may be still some few overlap. 
 
4.3 Evaluation 
4.3.1 Basel ine model  
Besides the algorithm we described above, we select baseline model weight parameters as 
𝑤6i.8i = 0.1, 𝑤78/9:;9 = 0.9 . And we use glove.6B[12]  embedding vector (200d) in our 
system. 
There are 835,757 valid entities in Wiki-annot30, and another 18,281 invalid entities whose 
Wikipedia page ids can’t be found anymore. My baseline model generates in total 1,497,147 
entities, among them: 

• 473,980 entities are aligned with Wiki-annot30 
• 88,970 entities are annotated by different wiki links from the links in Wiki-annot30. 
• 6,173 entities are missed from our output, that means for these phrases/words, we 

fail to annotate them by wiki link. 
• We still output other 934,197 entities, which are not overlapped with Wiki-annot30’s 

output. For these 934,197 entities, it’s difficult to tell whether they are correct or 
not, since they are not annotated in evaluation data set. So here we have to ignore 
them. 

 
We follow [6] to define topic-based notion of precision and recall: 
Let 𝐺(𝑇) be the wiki links associated to the anchors of text T in the ground truth, and let 
𝑆(𝑇) be the wiki links identified by the tested system over text T, so 

𝑃986.7I =
|𝐺(𝑇) ∩ 𝑆(𝑇)|�∈ℱ

|𝑆(𝑇)|�∈ℱ
 

𝑅986.7I =
|𝐺(𝑇) ∩ 𝑆(𝑇)|�∈ℱ

|𝐺(𝑇)|�∈ℱ
 

So for baseline mode, 𝑃986.7I=
���,���

���,������,���	
=84.2%, 𝑅986.7I =

���,���
���,���

=56.7% 
 
 
4.3.2 Siamese Network based model  
We create a Siamese network with hidden layer size is 256 as we described in Figure 1. The 
parameter is 𝑙2 = 1𝑒 − 6, 𝜆 = 100, 𝑏𝑎𝑡𝑐ℎ	𝑠𝑖𝑧𝑒 = 32, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 = 0.01, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 =
0.95max 𝑒𝑝𝑜𝑐 = 20. As we said in 4.1, cosine similarity’s precision over testing set is 
around 63%, the trained network outperforms cosine similarity a lot, achieve 78% precision 
over the same testing set.  
 
For overall annotation system end-to-end test, by replacing cosine similarity with Siamese 
network, 𝑃986.7I is increased to 88%, 𝑅986.7I is increased to 58%. 
 
4.3.3Errors analysis  and examples  
 
To demonstrate performance of our system, we also tried over some toy examples to show 
the system doesn’t always annotate text with most frequent link, e.g. 

1. Let’s have some beer in bar. 
We correctly link “bar” with “/wiki/Bar”, instead of most frequent link 
“/wiki/Bar_(law)” 

2. Fishing to get some bass  
“bass” is linked with “/wiki/Bass_(fish)” by our system, instead of more frequent 
link "/wiki/Bass_guitar”. 
 

By checking the evaluation results, we found errors mainly come from following parts 



1. POS mismatch 
Our system doesn’t consider POS alignment, so for example “(born 11 January 
1984) is a Bulgarian footballer currently playing for Lokomotiv Sofia as a striker.”, 
we wrongly link “Bulgarian” with /wiki/Bulgarian_language, in fact /wiki/Bulgaria 
is a better choice considering POS alignment. 

2. Coreference 
Our system annotates each text segments independently, so if first mention is full 
name, second mention is first name, we may wrongly link second mention to 
another entity with higher prior probability. 

3. Incorrect contextual similarity 
We represent context/link by averaging word vectors, this is an efficient way, but 
not accurate. In some case, it can’t capture contextual information correctly. E.g. 
“may limit the power output of microwave frequency transmitters in spacecraft and 
high-altitude aircraft applications. Waveguide components in such applications are 
sometimes pressurized to overcome the limitation imposed by”, our system links 
“pressurized” to “/wiki/Cabin_pressurization”, actually it should be linked to 
/wiki/Atmospheric_pressure, we are just biased by the word “spacecraft”. 

4. Evaluation data error 
There are also some errors in evaluation data set, e.g. “He has played for the 
Northern Virginia Royals of the United Soccer League's”, is evaluation data set, 
“United Soccer League” is linked with 
“/wiki/United_Soccer_League_(1984%E2%80%9385)”, but in latest Wikipedia 
page, it’s already fixed to "/wiki/United_Soccer_League”. 

5. Different word breaking ways 
E.g. for “Canadian province of Quebec”, our system will annotate “Canadian 
province”, and “Quebec” separately, but in evaluation set, only “province of 
Quebec” is annotated. 

6. Our system suggests better links 
In some cases, our system annotates text with more specific wiki link, e.g. “as the 
governor of the state of Washington”, we will link “governor” to 
“/wiki/Governor_(United_States)”, while in evaluation data set, it’s linked with 
more general concept “/wiki/Governor”. 

Also since entity annotation somehow is subjective, even different human beings may 
generate different annotation results, evaluating system by comparing to a fixed labeled data 
set may not be a good idea. A better way may be asking some human raters to check whether 
annotated wiki links are correctly linked with texts. But this is time consuming and will cost 
too much money. 
 
5 Conclusion and future work 
In this project, we successfully built an entity annotation system based on Wikipedia 
database. By applying Siamese neural network, we improved the system precision and recall. 
But there are a few directions we may want to continue exploring: 

• Apply POS signal/Coreference in to the system, this is known drawback of current 
system. 

• Better features to represent wiki link and contextual information, right now we 
simply average word vector. This way, we weight each word equally, but actually 
some word may be more meaningful. Also parsing tree structure of context may 
contribute more useful features like which term is more meaningful. 

• Deep learning shows big improvement in high level NLP tasks like named entity 
recognition, sentiment analysis, etc. But for some low level NLP tasks like 
Wikification/entity annotation, seems there is still no good way to apply deep 
learning directly into this field, we have shown Siamese neural network could 
improve precision a little bit, but the whole system still depends on good data 
statistics a lot. We may explore more on this direction. e.g. We may try to train a 



model directly capture context/link similarity, instead of making some independency 
assumption. 
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