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Abstract

In this project, we introduce a method to tackle the problem of sentiment classifi-
cation of large movie reviews, each consisting of multiple sentences. We leverage
a new architecture that encapsulates previous work applied to sentence-level sen-
timent classification, using Recursive Neural Networks and use it in unison with a
Recurrent Neural Network (where each time step is a sentence in the review). In
this report, we describe our results with this architecture as well as four other inter-
mediate approaches, one of which involves hand-crafted features. We demonstrate
through our experiments that hand-crafted features carry complementary discrimi-
native information in addition to that present in the learned neural network models.

1 Introduction

The problem of sentiment classification has received a lot of attention of late. It finds applications
in the fields of business intelligence, recommender systems (so as to be able to understand the
sentiment in a user’s feedback), in online surveys that have natural language sentences as responses,
message filtering, assessing movie review polarity, among others.

There have also been a spate of developments in the field of natural language processing using
methods from deep neural networks, for various tasks including simpler ones like POS tagging and
Named Entity Recognition [6].

We wish to investigate ways in which these recent advances can be applied to the problem of sen-
timent classification for paragraphs of text (i.e., with multiple sentences, as is the case typically in
moview reviews).

2 Related Work

Sentiment Classification has traditionally been solved using linear classification methods, such as
Supper Vector Machines (SVM) and logistic regression [1]. In early work in [3], methods such as
Naive Bayes classification and Maximum Entropy were studied. Advances in deep learning have
also recently been applied to sentiment classifcation. For instance, in [1], Maas et. al propose
a strategy to learn word vectors specifically for the task of sentiment analysis. They use an
unsupervised model to learn the semantic similarities between words, and a supervised component
that is able to capture nuanced sentimental information. They show very promising results - their
semantic + sentiment model captures sentimental similarity between words extremely well. For
instance, ‘melancholy’ is closest to ‘bittersweet’ and ‘heartbreaking’ (sentiment) as opposed to
‘thoughtul’ and ‘warm’ (semantic). However, our intent is to propose an architecture that performs
well with off-the-shelf word vector representations (like word2vec).
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In [2], Richard et. al. argue that semantic word spaces cannot express the meaning of longer phrases
in a principled way. They introduce Recursive Neural Tensor Network that pushes the state of
the art in single sentence positive/negative classification. They also introduced ‘Stanford Sentiment
Treebank’, a dataset that contains over 215,154 phrases with fine-grained sentiment lables over parse
trees of 11,855 sentences. Their results clearly outperform bag-of-words models, since they are able
to capture phrase-level sentiment information in a recursive way.

3 Technical Approaches

3.1 Using Semantic Word Vectors and Recurrent Architecture

In each review, we first separate the sentences from one another. We then represent each sentence
in the review with the average of word vectors of each word in the sentence. We then feed each of
these averaged word vectors into a Recurrent Neural Network (RecNN). This RecNN is designed in
such a way that the loss (cross entropy) only propagates from the last time step, all the way back to
the first time step, based on the predicted and actual sentiments of the full review.

3.2 Recursive Neural Network with mean likelihood

We split the review into sentences and feed the parse tree of each sentence into a recursive neural
network. The class probabilities output by the RNN are averaged to decide the most likely class.

3.3 Recursive Neural Network with Affine NN

We split the review into sentences and feed the parse tree of each sentence into a recursive neural
network. The hidden vectors output by the RNNs are averaged into a single vector and fed into a
2-layer neural network (affine NN).

3.4 Averaged Semantic Word Vectors

We represent each review by the average of the word vectors of all the words in the review. We
then use this as the feature as classify the sentiment of the review using an affine Neural Network/a
Support Vector Machine.

3.5 Semantic Word Vectors and Bag-of-Words Features

In addition to the averaged word vector representation of all the words in the review, we also include
bag-of-words features with IDF weighting and then use a Support Vector Machine classifier on this
concatenated feature vector. We experimented with a variety of loss functions and regularization
strengths for the SVM classifier, as this was our best performing model.

3.6 Recursive-Recurrent Neural Network Architecture

In this approach, we use the idea of recursively learning phrase-level sentiments [2] for each sentence
and apply that to longer documents the way humans interpret languages - forming sentiment opinion
from left to right, one setnence at a time. Specifically, we split the movie review into sentences.
Then, each sentence is fed into a recursive neural network (RNN) which outputs a hidden vector
and a sentiment for the sentence. We pass the RNN’s hidden vector of each sentence as an input
to a recurrent neural network (i.e., we consider each sentence as a time step for the RecNN). It is
certainly conceivable that sentences that occur early on in a review need to be considered differently
from those in the last part, to evaluate their importance for sentiment classification. We explore this
idea later in the report. In this way, we are able to capture phrase-level sentiment for each sentence
and sentence-level sentiments for the whole document. This architecture is illustrated in Figure 1.
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Figure 1: Approach 6: Classification Architecture.

4 Data

We use the IMDB movie review dataset provided by Maas et. al. [1]. We train the word vectors
on this corpus using the skip-gram architecture. Note that [1] is specifically about learning word
vectors for sentiment analysis. As mentioned earlier, we intend to use standard, off-the-shelf vectors
along with a novel architecture. Therefore, we have used word2vec to generate 100 dimensional
vectors for each word in our corpus (using skip-gram).

5 Transfer learning with RNNs

We trained a recursive neural network using the dataset provided by Stanford Sentiment Treebank
[7]. The dataset contains fine-grained phrase-level sentiment labels (5 classes, ranging from Very
Negative to Neutral to Very Positive). We used this trained model on the classification task on the
IMDB movie review dataset. Since we do not have fine-grained labels for this dataset, we do not
update the RNN parameters during training. Additionally, we used the NLTK tokenizer (punkt
module) to split the movie reviews into sentences and Stanford Parser to generate its parse tree.
While our implementation of the RNN (which uses a ReLU non-linearity as opposed to the one
in [2]) yields an accuracy of 80.8% on all nodes (fine-grained), it only yields an accuracy of 45%
(fine-grained) and 85.1% (binary) on root node classification.

6 Experimental Results

We experimented extensively with the various approaches and tuned the hyper-parameters to extract
the best performance from these models.

For the approaches that use semantic word vectors, we experimented with using both the 300-
dimensional GloVe vectors [4] pre-trained on Wikipedia 2014 and Gigaword 5 data and also a
self-trained word2vec model. We learnt 100-dimensional vectors using the word2vec model [5],
with our moview review training data as the corpus. Apart from these, in the bag-of-words model,
we used idf weighting and removed stop words. We also performed L2 normalization. We explored
using bigrams but it proved to be too computationally expensive.

For our baseline approach (method 3.4), we tokenize the movie review to extract the words and
then average the word vectors to create a fixed dimensional input vector for each of our classifiers
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Figure 2: Transfer Learning RNN: Training and Dev Accuracy vs. Number of epochs.

Approach Test Accuracy
Method 3.1, Mean Word - RecNN 82.35%
Method 3.2, Mean Prob - RNN 81.8%
Method 3.3, RNN-Affine 81.42%
Method 3.4, SVM-RBF 76.69%
Method 3.4, SVM-Linear 83.28%
Method 3.5, SVM-Linear 86.496%
Method 3.5, 2-layer NN 83.94 %
Method 3.6, RecNN-RNN 83.88%

Table 1: Summary of results

(SVM/NN). NN model performs the better of the two. The NN uses a sigmoid activation for the
hidden layer and cross-entropy loss as the objective. Figure 9 plots the loss and accuracy of the NN.

In the Recursive-Recurrent approach, we experimented with reversing the order of the sentences
input to the Recurrent architecture but that did not have any significant impact on the test accuracy
(83.76 % vs 83.88 %). The learning curves for both these are plotted in Fig 3 and Fig 4 respectively.
We separated 5000 reviews from the train set and constituted our dev set, for tuning the hyperpa-
rameters. We finally tested on the test set of 25000 reviews. For the normal order (Fig. 3), we used
a learning rate of 0.001 and a regularization strength of 0.00001. For the reversed order, we used a
learning rate of 0.001 and a regularization strength of 0.00003.

7 Conclusion

Our objective in this project was to apply the advances in deep learning, including more intuitive
model architectures to the sentiment classification problem. We performed several experiments
with approaches that have traditionally been used for sentiment analysis, like SVM/Affine neural
networks. We also extensively experimented with the proposed architecture - Recursive Neural
Network for sentence-level analysis and a recurrent neural network on top for passage analysis.
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Figure 3: Approach 3.1, Normal order of sen-
tences to the Recurrent Architecture

Figure 4: Approach 3.1, Reversed order of sen-
tences to the Recurrent Architecture

Figure 5: Approach 3.5, Test
Accuracy vs Regularization
strength

Figure 6: Approach 3.5, Test
Accuracy vs Regularization
strength

Figure 7: Approach 3.5, Test
Accuracy vs Regularization
strength

Figure 8: Approach 3.3, Loss and Test Accuracy
vs Epoch Number for the 2-layer NN on top of
sentence-level RNN

Figure 9: Approach 3.5, Loss and Test Accuracy
vs Epoch Number for the 2-layer NN

We considered this to be a more intuitive model since it maps naturally to how humans interpret
passages.

We observed that the information in the semantic word vectors is complementary to that contained
in the tf-idf bag-of-words representation, since addition of these features to the averaged semantic
vectors yields an increment of 3.2% in the test accuracy, as seen in Table 1.

We also observed that a simple model with handcrafted features (like Bag of words with TF-IDF, bi-
grams etc.) performs better than other methods. However, our proposed architecture (RNN+RecNN)
is able to achieve a test-set accuracy of 83.88% without any handcrafted features at all. We think its
an important observation that the model can perform almost as well as featured-engineered models,
even with a tranfer-learned RNN and no handcrafted features. This serves as an optimistic baseline
for what the model can achieve - With more architectural exploration and fine-tuning, the model can
possibly outperform the state-of-the-art.
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