

Log File Anomaly Detection

 Tian Yang Vikas Agrawal
 NVIDIA Inc. NVIDIA Inc.
 tiyang@nvidia.com vagrawal@nvidia.com

Abstract
Analysis of log files pertaining to a failed run can be a tedious task,
especially if the file runs into thousands of lines. Using the recent
development in text analysis using deep neural networks, we present a
method to reduce effort needed to analyze the log file by highlighting the
most probably useful text in the failed log file, which can assist in
debugging the causes of the failure. In essence we reduce the log file by
removing the lines which are found to be of less importance to the debug.
We measure the accuracy of our reduction by F1 score, as well as custom
scoring method on manually labeled data, where important lines from a
‘failed’ log are extracted by the experts of the domain.

1 Introduction
Anomaly detection in log file deals with finding text which can provide clues to the reasons
and the anatomy of failure of a run. Most commonly, domain and tool specific
regular-expression from previously seen error messages is used to dig the relevant text from
the log file. However such regular expressions need persistent manual management to ensure
the correctness and relevance. Also newer messages of failures are easily missed with this
method.

Conversely, a black-list regular-expression file, which contains regular expressions for all the
un-harmful ‘text’ is also sometime maintained. However such list can grow huge fast, in our
domain of vlsi-design, to thousands of lines. This makes further maintenance and execution
practically prohibitive.

Ahmed [1] used grammar inference to find anomalous text. Here a representative grammar is
constructed out of training set, and compared against the test set to figure text which doesn’t
conform to the learned grammar.

Similar to above, our hypothesis on log file anomaly detection relies on the fact that any text
found in a ‘failed’ log file, which looks very similar to the text found in ‘successful’ log file
can be ignored for debugging of the failed run. Anomaly detection is trying to find ‘salient’
or ‘unique’ text previously unseen.

In this work, we propose to use neural network language model learned from ‘successful’ log
files, to predict the anomalies in a ‘failed’ run, there by attempting to reduce the size of the
log file which needs manual review. With no domain knowledge or tokenization, we claim to
get upto 85% log size reduction, while keeping more than 77% of useful information. The
reduced log file contains most of the text relevant to the failure of the run, with additional
text which is considered false positive. The text which is useful for debug, but missing from
reduced log file is considered as false negative. We propose to use F1 score as measure of
accuracy of the reduction.

2 Model description
Language models for prediction of next word based on contextual statistical data has been in
existence for many years with incremental improvements of n-gram models [2]. More
recently, “Recurrent Neural Network [RNN]” based statistical model [4,5] have been able to
provide better language model and more forgiveness for non-exact (n-1) phrase in an n-gram.
Further, invent of character vector based RNN-language model [6,7] reduces the vocab size
and allows better learning from text which has high variability tokens [such as date-stamp
and runtime metrics].

We experimented with word vector based RNN language [word-RNNLM] model as well as
char vector based language RNN model [char-RNNLM] as described in the following
section.

2 . 1 Wo r d Ve c t o r b a s e d L a n g u a g e m o d e l [w o r d - R N N L M]

We used 1 hidden layer recurrent neural network for training.

Figure 1: Structure of one hidden layer RNN used in word vector based language model

Figure 1 shows the structure of word vector based language model. Here 𝑥(#) is the input
word vector (of dimension) at 𝑡 timestamp, ℎ(#) is the hidden layer (of dimension), 𝑦(#)
is the predicted probability of next word at 𝑡 timestamp:

𝒉 𝒕 = 𝐬𝐢𝐠𝐦𝐨𝐢𝐝 𝒉 𝒕 𝑯 + 𝒙 𝒕 𝑰 + 𝒃𝟏 	 …… (𝟏)

𝒚(𝒕) = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱 𝒉 𝒕 𝑼 + 𝒃𝟐 …… (𝟐)

Cross entropy loss function was used for training:

𝑱 𝜽 = 𝐂𝐄 𝒚 𝒕 , 𝒚 𝒕 = − 𝒚𝒊
𝒕 𝐥𝐨𝐠 𝒚𝒊

𝒕
𝑽

𝒊I𝟏

	 …… (𝟑)

During testing, the objective was defined as to find the paragraph loss of each paragraph.
Each paragraph contained just one sentence delimited by newline character in the dataset we
used.

Sentence loss hence was defined as the average loss RNNLM model found by addition of
each word in the sentence.

𝒍𝒐𝒔𝒔 =
𝑱𝒕 𝜽𝑳

𝒕I𝒘P𝟏

𝑳 − 𝒘
	 …… (𝟒)

𝐽#(𝜃) is the cross entropy loss at 𝑡 timestamp, 𝐿 is the number of tokens in the sentence,

and 𝑤 is the number of tokens we used for warm up the hidden state during testing.

2 . 2 C h a r a c t e r Ve c t o r b a s e d L a n g u a g e m o d e l [c h a r- R N N L M]

We used recurrent neural network of 2 hidden layers with hidden layer dimension of 128 and
sequence length of 50 and 150. We experimented with GRU, RNN and LSTM based models
with various parameters.

Sentence loss function in char-RNNLM was defined as the average loss of each character.
Same loss function (4) is used with 𝐿 representing the total number of characters in the
sentence and 𝑤 being the number of characters for warm up during test.

3 Experiments

3 . 1 D a t a s e t

We collected 90K log files from various stages of the VLSI design process, and sampled
2.5K files with uniform random distribution based on length, process, and design attributes.
The log files were of varying length from 500 lines to 20000 lines in length.

3 . 2 E x p e r i m e n t s w i t h w o r d v e c t o r R N N L M

Since log file contains several token which are not in English vocabulary, number of unique
tokens quickly grow with each file added into training data. without any tokenization we
have 116,000 words in vocabulary, with about 2500 log files, totaling to 810,000 lines.
Reduction in Vocab size was pretty much essential, and we did aggressive tokenization of log
file data, splitting it for all special characters, and merging all numbers into a single token.
Post tokenization, Vocab size reduced to somewhat manageable 14K words.

Without tokenization, training took about 48 hours, which reduced to 6 hours with
tokenization on a TITAN X GPU with 1100 Mhz clock. Most experiments with word vector
RNN were limited to better tokenization due to large vocabulary size.

Dataset is divided into Training, Dev and Test with 50/25/25 split. Language model was
trained with final parameters of [learning rate=0.001, dropout=0.5, hidden_size=200,
embed_size=50]. Final training perplexity [=1.62], Validation perplexity [=2.14], and test
perplexity[=2.18] was achieved on the language model.

3 . 3 E x p e r i m e n t s w i t h C h a r- R N N L M

3 . 3 . 1 Tr a i n i n g r a w d a t a

We trained the char-RNN on a reduced database containing roughly 150,000 lines, [to limit
the training runtime] and used a dev-set of 60 labeled log file and tested the model
performance on 40 labeled log files. For the character RNNLM we didn’t use any
tokenization and used the raw log file data as it is. We did however experiment with
tokenization for one model as described in next section.

Training took between 10-12 hours on the TITAN X GPU with 1100 Mhz clock, for most of
the experiments.

3 . 3 . 2 A d d i t i o n o f s o m e d o m a i n k n o w l e d g e

Analysis on the false positive indicated a few common trends. One of them was the difficulty
of learning with variable tokens such a ‘block-name’, which shows up in lines of text such as
 Value 'DESIGN(UPF_FILE,ICC)' changed by ./NV_FBIO_hs_wck_AFCR90.yaml: from 0 to 1

Typically, these lines contained text of format:

 <block_name>.<file_attribute>.<file_extention>

We used following two regular expressions to tokenize such ‘words’
 s!<\S+>\.\([^]*\)!BLOCK.\1!g

Which results in:

 Value 'DESIGN(UPF_FILE,ICC)' changed by ./BLOCK.yaml: from 0 to 1

3 . 5 M e a s u re m e n t

Goal of anomaly detection is to remove unimportant lines from a failed log file, such that
reduced log file contains all the useful information needed for the debug of the failure. For
the purpose of dev/test, we manually reduced a set of 100 log files, to minimal size which
contained all the useful information about the failure. We split it into 60/40 as dev/test set.

For each of the trained model, we calculated sentence loss for each line of the dev set, and
given the sentence loss for each line, we calculated the threshold loss [𝑳𝒐𝒔𝒔𝒕𝒉], such that
mean F1 score across all dev set is maximized. We used this threshold to reduce the test-log
file size. Any lines with 𝑙𝑜𝑠𝑠 < 	 𝑳𝒐𝒔𝒔𝒕𝒉 were suppressed. We then calculated F1 score of the
test set, along with precision and recall. We report the mean and std-dev of F1 score, across
all test logs, as well as precision, and recall in the section 4.

𝐿𝑜𝑠𝑠#Z = argmax`abb∈{`abbe|b∈ghi}	 𝐹1 𝐿𝑜𝑠𝑠 …… (5)

The reduction (%) 𝑅 is defined as:

𝑅 =
1{𝐿𝑜𝑠𝑠o < 𝐿𝑜𝑠𝑠#Z}p

oIq

𝑁	
	 ×100%	 …… (6)

Where 𝑁 is the total number of lines in the “failed” log file and the numerator is the number of
lines remaining below the sentence loss threshold.

4 Results and analysis

4 . 1 C h o o s i n g R N N M o d e l

Table 1, below shows the comparison of accuracy and log file reduction as seen by different
RNN models we experimented with.

Method
Seq.

length

R%

 F1 score

Precision Recall Mean Std-dev

Word-RNN 50 74.15% 0.123/0.135 0.445/0.228 0.170 0.153

Char-LSTM 50 87.8% 0.525/0.381 0.570/0.317 0.361 0.321
Char-RNN 50 75.3% 0.471/0.32 0.652/0.192 0.507 0.299
Char-GRU 50 73.4% 0.407/0.319 0.637/0.186 0.446 0.298

 Table 1: Comparison between RNN models

Word-RNNLM suffered from low precision though compared to all three char-RNN based
methods, though comparable reduction of log file. For the sequence length of 50, simple
RNN based model worked best in terms of F1 score. Further we focused mainly on
char-RNN models with different cells [gru, lstm and rnn], for its versatility.

4 . 2 E f f e c t o f To k e n i z a t i o n o n c h a r- R N N L M

Note that for all the models we tried to achieve the best F1 score, and report the reduction
and accuracy parameter for the loss-threshold, which achieves the best F1 score.

Table 2 shows the effect of small amount of tokenization as explained in section 3.3.2.
Tokenization with domain knowledge helped improve the F1 score, however achieved ~10%
lower log file reduction.

Model
Seq.

length
R%

 F1 score
Precision

(mean/std-dev)
Recall

(mean/std-dev) Mean Std-dev

LSTM 50 87.8% 0.525/0.381 0.570/0.317 0.361 0.321
LSTM-token 50 77.2% 0.392/0.362 0.698/0.221 0.403 0.318

 Table 2: Tokenization for char-RNN

4 . 2 E f f e c t o f S e q u e n c e l e n g t h o n c h a r- R N N L M

Table 3 shows e f f e c t o f s e q u e n c e l e n g t h v a r i a t i o n o n d i f f e r e n t c e l l s o f
c h a r- R N N L M .

Model
Seq.

length
R%

 F1 score
Precision

(mean/std-dev)
Recall

(mean/std-dev) Mean Std-dev

RNN 50 75.3% 0.471/0.32 0.652/0.192 0.507 0.299

RNN 150 15.2% 0.085/0.162 0.979/0.032 0.130 0.034

RNN 250 13% 0.063/0.081 0.95/0.022 0.109 0.133
LSTM 50 87.8% 0.525/0.381 0.570/0.317 0.361 0.321
LSTM 150 90.3% 0.379/0.297 0.555/0.199 0.420 0.282
LSTM 250 74.4 0.415/0.323 0.609/0.243 0.446 0.327
GRU 50 73.4% 0.407/0.319 0.637/0.186 0.446 0.298
GRU 150 78.88% 0.416/0.317 0.756/0.146 0.473 0.297
GRU 250 85.6% 0.597/0.238 0.775/0.160 0.661 0.215

 Table 3: Sequence length

Simple RNN starts well with sequence length of 50, with best F1 score (0.507), amongst the
three cells, however as the sequence length is increased in hope for better F1 score and log
file reduction, GRU outperforms with highest F1 score and a reasonable good reduction in
log file size. We see that its able to retain > 77.5% of the important text (as seen in the recall
value), while reducing the log file by 85.6%. GRU and LSTM have better performance when
sequence length getting larger, gradient vanish problem become severe for regular RNN.

4 . 3 F 1 s c o re m a x i m i z a t i o n :

Figure 1 shows the variation of F1 for the best model [GRU/250], plotted against the loss
threshold.

Figure 1

5 Conclusions and future work
The fundamental hypothesis of this work, concerning ability to differentiate the text which is
similar to previously during training Vs newer text, through RNN based language modeling
worked quite well. We were able to show reduction in log file by upto 85% using raw log
files, while keeping more that 77% of useful information intact. For the smaller sequence
length, addition of domain knowledge in terms of tokenization helped improve the accuracy,
however even better accuracies could be achieved by simply increasing the sequence length,
and using GRU cell.

Analysis on false positives reveal a few trends, such as words which are used only in one or
two unique phrases tend to get high loss in the during testing. Also that token which contain
domain specific information, which is subject to change each run, sometimes results in high
loss.

Not all “newer” text is of same importance in debugging the log file. And the next step is to
train the language model using the additional text from “failed” log files which is found to be
not useful for debug, however it’s somewhat new. Addition of such text into training model is
expected to further compress the final log file size.

We also believe that using the language model, and suitable training data, we can remove the
high variability tokens such containing information such as ‘block name’ and ‘design
environment variables’, and then they can be replaced by fixed tokens. This should improve
the performance of the anomaly detection significantly.

A c k n o w l e d g m e n t s

We would like to thank Richard Socher and the course staff [cs224d-2016], for useful insight
and suggestions during this work.

We would like to acknowledge use of char-RNN modeling code based on Andrej
Karpathy's char-rnn, by the Github contributor Sherjil Ozair [3].

R e f e re n c e s
 [1] Ahmed Umar Memon (2008). “Log file categorization and anomaly analysis using grammar
inference” . Master thesiss, Queen’s University Kingston, Ontario, Canada

 [2] Goodman Joshua T. (2001). A bit of progress in language modeling, extended version. Technical report
MSR-TR-2001-72.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

F1
	 sc
or
e

Loss	 threshold

Mean	 F1

 [3] https://github.com/sherjilozair/char-rnn-tensorflow

 [4] http://karpathy.github.io/2015/05/21/rnn-effectiveness/

 [5] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur, (2010). "Recurrent neural network
based language model," in Proc. Interspeech, , pp. 1045-1048.

 [6] Cicero D. Santos and Bianca Zadrozny, (2014). “Learning Character-level Representations for
Part-of-Speech Tagging”, Proceedings of the 31st International Conference on Machine Learning (ICML-14).

 [7] Kim, Yoon, et al. (2015), "Character-aware neural language models." arXiv preprint arXiv:1508.06615.

