
Multiclass Sentiment Prediction using Yelp Business
Reviews

April Yu
Department of Computer Science

Stanford University
Stanford, CA 94305

aprilyu@stanford.edu

Daryl Chang
Department of Computer Science

Stanford University
Stanford, CA 94305

dlchang@stanford.edu

Abstract

Many e-commerce and related sites allow text reviews, which provide much more
detail than the quantitative metric of star ratings. However, star ratings provide
insight on a establishment or product very quickly. Seeding new e-commerce sites
with this quick quantitative information from pre-existing text reviews scattered
throughout the Internet would greatly improve the information provided about an
item or establishment. Is it possible to translate the detail of text reviews into the
quick usefulness of a numerical rating? We hope to explore this through multiple
deep learning techniques.

1 Introduction

Sites like Yelp and Amazon allow users to formalize their thoughts and opinions of businesses and
products in the form of text reviews and numerical ratings. These text reviews provide the highest
granularity of detail that restaurants are able to receive directly from their customers. However,
when expanding to a new area, Yelp often lacks reviews for local businesses, a problem that could
be ameliorated by seeding the business page with relevant reviews scraped from the web. If a scraped
review does not have a numerical rating, one needs to be generated from the review text itself.

Using the Yelp Challenge Academic Dataset and pre-trained GloVe word vectors, we run various
neural networks on text reviews to predict the star rating associated with that particular review. We
set a preliminary baseline for our work by using softmax regression on the mean of the word vectors
for a review. With this baseline metric in mind, we implement a recurrent neural network with
LSTM and a convolutional neural network. In both approaches, we use pre-trained word vectors
instead of randomly initializing and then training word vectors.

2 Background/Related Work

One simple model for sentiment analysis is the bag-of-words model, which vectorizes a document as
the occurrence counts for each word, sometimes using a reweighting scheme such as tf-idf to place
more importance on unique words. However, the bag-of-words model does not account for more
complex interactions, such as word order and long-range dependencies. Socher gives the example of
”white blood cells destroying an infection” and ”an infection destroying white blood cells” having
the same bag-of-words representation, despite the former being positive and the latter being negative
(Socher et al., 2011).

Vector space models (VSMs) learned from co-occurrence counts, as in GloVe and word2vec, have
achieved higher performance on sentiment analysis. These models represent words in a high dimen-
sional space, encoding both syntactic and semantic information, with a bias towards the latter as

1



the window size grows larger. These vectors can be used as inputs for different tasks; in sentiment
analysis, for example, we can use softmax regression on the word vectors to predict the polarity of
the document. We can also use the word vectors as inputs for a variety of neural networks.

2.1 Long Short-Term Memory

Hochreiter illuminates the problem that with conventional recurrent neural learning, the back-
propagated error tends to either ”blow up” or ”vanish” (1997). He proposes long short-term memory,
which is designed to overcome these error back-flow problems by learning to bridge time intervals
in excess of 1000 steps even in the case of noisy, incompressible input sequences. With the case of
Yelp Reviews, the sentiment of a sentence can be largely dependent upon words that are far away
from each other. A traditional recurrent Neural Network (RNN) would be ineffective at learning
these long-range dependencies.

2.2 Convolutional Neural Networks

Both Kim and Kalchbrenner et al. have successfully used convolutional neural networks for a variety
of sentiment analysis tasks. Kalchbrenner et al. (2014) employs a CNN with the following layers:

• Convolutional layers using wide convolution in order to ensure that all weights of the filter
reach words at the margin of each sentence.

• k-max pooling, in which the k largest values in a sequence are returned in the order they
appear in the sequence.

• Folding, in which every x rows are summed up component wise to reduce feature dimen-
sionality.

• Dropout, in which a binary mask of Bernoulli random variables is applied to prevent co-
adaptation of the hidden units.

Kalchbrenner combines multiple sets of these layers to create neural networks of varying depth.
The neural network achieves 48.5% accuracy on 5-way sentiment classification on the movie re-
view dataset from the Stanford Sentiment Treebank, and 86.8% on binary sentiment classification
(Kalchbrenner et al., 2014).

However, Kim achieves equivalent results with a simpler convolutional neural network that uses
max-over-time pooling and a single convolutional layer (Kim, 2014). He also demonstrates the
use of multichannel word vectors, in which both static and non-static pretrained word vectors are
used, with the intermediate feature map being the sum of the two resulting feature maps. With
the multichannel architecture, Kim achieves 47.4% accuracy on the 5-way movie review sentiment
classification task and 88.1% on the binary classification task (Kim, 2014).

3 Approach

We experiment with the two aforementioned models: recurrent neural networks with long short-term
memory, and convolutional neural networks.

3.1 Recurrent Neural Network with Long Short-Term Memory

We implement a variation of the LSTM proposed by Hochreiter et al, which introduces a new struc-
ture called a memory cell. To allow for constant error flow, a multiplicative input gate unit protects
the memory contents from perturbation by irrelevant inputs. Similarly, a multiplicative output gate
unit protects other units from perturbation by currently irrelevant memory contents. This creates a
memory cell, which is built around a central linear unit with a fixed self-connection. We implement
a variant of the Hochreiter LSTM with the following equations:

it = σ(Wixt + Uiht−1 + bi) (1)

C̃t = tanh(Wcxt + Ucht−1 + bc) (2)

2



ft = σ(Wfxt + Ufht−1 + bf ) (3)

Ct = it ∗ C̃t + ft ∗ Ct−1 (4)

ot = σ(Woxt + Uoht−1 + b1) (5)

ht = ot ∗ tanh(Ct) (6)

where

• xt is the input to the memory cell layer at time t
• Wi,Wf ,Wc,Wo, Ui, Uf , Uc, Uo are weight matrices
• bi, bf , bcandbo are bias vectors
• it is the value for the input gate

• C̃t is the candidate value for the states of the memory cells at time t
• ft is the activation of the memory cells’ forget gates at time t
• Ct is the memory cells’ new state at time t
• ot is the value for the output gates
• ht is the output

The gates control the error flow to and from the memory cell cj by learning when to capture and
release the errors and appropriately scaling them.

Figure 1: Architecture of memory cell cj (the box) and its gate units inj , outj

We use a network with one input layer, one hidden layer and one output layer. The hidden layer
contains the memory cells and the corresponding gate units.

Figure 2: Example of a net with 8 input units, 4 output units and 2 memory cell blocks of size 2

3



We implement a recurrent neural net similar to one depicted in the above diagram with different
dimensionality for the input, hidden and output layers. All results are a product of 128 hidden units,
unless otherwise specified. Our model is composed of a single LSTM layer followed by an average
pooling and a logistic regression layer. From the input sequence x0, x1, ..., xn, the memory cells in
the LSTM layer produces a representation sequence h0, h1, ..., hn. This sequence is averaged over
all timesteps, thus resulting in representation h. This representation is fed to a logistic regression
layer, whose output is the class label associated with the input sequence.

All diagrams are borrowed from Hochreiter et al.

3.2 Convolutional Neural Network

We implement a version of Kim’s convolutional neural network, with our key contribution being the
use of chunking instead of zero-padding for the feature matrices.

Figure 3: Convolutional neural network. Adapted from Kim.

As shown in Figure 3, we represent each review by concatenating the word vectors of the words
in the review to form a feature matrix. The feature matrix is then convolved using multiple feature
filters to form a feature map. Max-over-time pooling is then applied to the feature maps to form
a one-dimensional vector, on which dropout is then applied to prevent feature co-adaptation. Then
a hidden fully-connected layer and non-linearity are applied to the vector to produce the resulting
output.

Our implementation differs from Kim’s in three key aspects:

• We use GloVe vectors instead of word2vec vectors.

• Since each input sentence is of a different length, Kim pads each matrix with zeros, stan-
dardizing the dimensionality of the input matrices (Kim, 2014). While we implement zero-
padding, we find that it does not translate well to our dataset, both in terms of computational
efficiency and accuracy. Consequently, we instead segment each review into chunks of a
fixed length and use the CNN to predict the sentiment of each one, as shown in Figure 4.
The overall sentiment is then calculated by averaging the chunk sentiments.

• Instead of using softmax and cross-entropy as the non-linearity and cost function, respec-
tively, we change the hidden layer to output just one number, effectively changing the
model from a classifier to a regressor. Consequently, we use mean squared error as our
cost function. We do so because categorical classification does not include any gradation
of errors; for example, predicting a ’2’ on a review with 4 stars is just as bad as predicting
a ’3’. Using regression allows us to account for the distance between the predicted and
actual labels. To calculate label accuracy, we round the regression prediction to the nearest
integer.

4



Figure 4: An illustration of the chunking process applied to each review.

4 Experiments

We use the Yelp Academic dataset, which consists of 1.6 million reviews by 366,000 users over
61,000 businesses. We segment our dataset into 2 sections, split 85/15: development and testing.
We run cross-validation of our models on the development set throughout development and test on
the test set after parameter tuning and model refinement.

As shown in the figure, the Yelp dataset is highly skewed toward positive ratings. Initially, we
adjusted for the class imbalance by sampling equally from each class for the training examples;
however, we then decided to keep the class distribution in order to better reflect the real-world
context in which such a model would be used.

Figure 5: The Yelp dataset is highly skewed towards 4- and 5-star ratings.

Our baseline metric for the project is softmax regression on the averaged word vectors for a review,
which achieves 45% accuracy on the test set.

With an LSTM implemented as stated above and a hidden layer dimensionality of 128, we achieve
51% accuracy on the dev set. We then begin looking into the effect the hidden layer dimensionality
has on the accuracy achieved by the model:

5



Figure 6: We performed experiments that test the effect of the hidden layer dimensionality on the
overall model accuracy

As the dimension of the hidden layer increases, the accuracy of the model as a whole increased.
However, as expected, the overall time spent training the model with higher and higher dimension-
ality exponentially increased. The last experiment, where the hidden layer dimension was 250, took
about 10 hours to train.

We then compare the performance of CNNs with zero padding and chunking, optimizing each using
a grid search over the parameters. While the CNN with zero padding achieves a maximum accuracy
of 28% after grid search, the CNN with chunking achieves 34%. We hypothesize that the zero
padded CNN performs poorly because the majority of the features in the feature matrix for shorter
reviews would consist of zeros, thereby creating spurious features in the feature maps. This issue is
magnified in review classification due to the increased variance in review length. Chunking performs
surprisingly poorly as well, given that it avoids the zero padding problem.

In order to ensure that our CNN implementation did not contain a bug, we run Kim’s implementation
on the Yelp dataset for comparison. However, it also performs quite poorly on the dataset, indicating
that its performance does not translate well from sentence classification to review classification.

Table 1: Model Comparison
Model Accuracy

Softmax regression 0.45
RNN with LSTM 0.51

CNN with zero padding 0.28
CNN with zero padding (Kim) 0.32

CNN with chunking 0.34

Finally, we examine the effect of varying each parameter on the accuracy of the convolutional net-
work, as shown below in Figure 6. We find that using 100 filters, a window size of 4, dropout of
0.5, and a regularization constant of 1.0 achieves the optimum accuracy, the same parameters used
by Kim (2014).

6



Figure 7: We performed experiments varying the parameters of the CNN to optimize accuracy and
explore the effects of each parameter.

5 Conclusion

Through the various experiments, we learned much about the models we implemented and the over-
all application of neural networks to Natural Language Processing tasks. We were optimistic when
first beginning the project, but later realized that the models did not meet our initial expectations.
This is partially a result of the fact that the papers we referenced focused on single sentence bi-
nary classification, while our task was multi-sentence sentiment analysis. Our task had 5 output
possibilities, which greatly affected the accuracy of the implemented models. The multi-sentence
structure of the reviews, as opposed to individual sentences, also negatively affected the accuracy
of both the RNN and CNN, in comparison to the results reported by Kim et al and Hochreiter et al
respectively. Particularly with the CNN, we learned that zero padding and chunking were ineffective
in the context in which we used them.

In the future, we hope to implement a recursive neural network on top of the CNN for each chunk,
which we anticipate will improve the performance of the overall model.

6 References

S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. In Neural Computation,
9(8):1735-1780

N. Kalchbrenner, E. Grefenstette, P. Blunsom. A Convolutional Neural Network for Modelling
Sentences. In Proceedings of ACL 2014.

Y. Kim. 2014. Convolutional Neural Networks for Sentence Classification. In Proceedings of
EMNLP 2014.

7



R. Socher, J. Pennington, E. Huang, A. Ng, C. Manning. 2011. Semi-Supervised Recursive Autoen-
coders for Predicting Sentiment Distributions. In Proceedings of EMNLP 2011.

8


	Introduction
	Background/Related Work
	Long Short-Term Memory
	Convolutional Neural Networks

	Approach
	Recurrent Neural Network with Long Short-Term Memory
	Convolutional Neural Network

	Experiments
	Conclusion
	References

