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1 Introduction

Question answering is one of the most challenging tasks in NLP. Search engines use various infor-
mation retrieval methods to provide this service to the users. However, these approaches require lots
of human intervention. Making the end to end process of question answer automated using machine
learning is a more expandable approach.

Research has been done on the use of various memory network [1]] models for question answering.
However, as far as our reviews went, there has been limited investigation on the use of such models
with a large scale natural language knowledge base (henceforth KB). Recent work by [2] and [4]
mostly evaluated their natural language question answering capability over Facebooks bADbI tasks,
which are a synthetic dataset and do not require inferring answers from hundreds of facts. [3]]
explored a large scale KB, but its facts were already structured as subject, relation, object tuples. In
the present work we leverage the works of these authors and explore using Wikipedia articles as a
natural language KB.

2 Problem Statement

At run-time given a trained model and a Wikipedia page, the user should be able to ask questions
from the model about that page, and the model should be able to generate answers. In a limited
sense, we envision our end to end system being able to act similarly as a human, which can learn
from reading text and then be able to answer questions. [5] showed promising results for question
answering given a KB of fact tuples using memory networks.

Our approach to this problem is to use a machine learned model that can infer from a set of input
facts and answer a given question. Memory network models are one of such models that aim to do
this.

This is distinct from previous research as follows: In [3]], [4] only the facebook bAbI is being used,
and in [5] structured data is consumed as the main knowledge base. Using unstructured data, such as
Wikipedia raw text, is both challenging and interesting as minimal human intervention is necessary
to scale up the question answering system capabilities.

To make the problem easier, and closer to bAbl, We focus on the questions that have single word
answers. This will reduce the size of our dataset, as we will discuss in the next section, but will help
us focus on one part of the problem, which is to learn from the input facts, and generate a correct
answer.

2.1 Data

We have access to Microsoft Bing’s data used for explanatory question answering (EQnA). This
data is in the format of (question, answer paragraph, Wikipedia page). It is mined from the logs and



filtered by human judges. We currently have over 700,000 such tuples. In other terms, these are
organic, not synthetic, queries. Below is an example of the data that will be used:

Question: who won the world cup 2010?
Answer: spain
Accompanying facts (i.e. Wikipedia page sentences):

(..)

spain defeated the netherlands one zero with a goal from andrs iniesta four minutes from the end of
extra time.

english referee howard webb was selected to officiate the match , which was marked by an unusually
high number of yellow cards.

with both the netherlands and spain attempting to win their first fifa world cup.

(...)

In the terminology of the existing memory networks literature, the Wikipedia raw page is the set of
input facts and the answer paragraph is the answer. We filtered the tuples to those with single word
answers. The following are the datasets we composed:

e Dataset 1 (DS1): 2.6k question-answer pairs (henceforth QAs) for training (train), 371 for
validation (val), 350 for test. The data includes only the top 1000 urls with most QAs.
Splitting the train/val/test was done randomly 80:10:10. The rationale behind picking the
top urls was to focus on the input facts with the most question/answer pairs. An issue
with this dataset was that there were question/answers with the same urls(input facts) in
train/val/test sets.

e Dataset 2 (DS2): 14,105 train, 1,979 val, and 2,136 test: all urls, split 80:10:10 with no
shared urls between train/eval/test. Splitting is done to make sure the urls are exclusive in
the train/val/test sets.

e Dataset 3 (DS3): 2,131 train, 138 val, 265 test. Only tuples with answers occuring more
than 10 times over all the data were chosen. This is to focus on the tuples that force the
model to not overfit by mapping facts to answers. We will elaborate on this more in the
experiments section.

2.2 Evaluation Plan

Since we will focus on single word answers, our main evaluation metric would be the accuracy of the
model in selecting the correct answer word. The datasets, as mentioned in [2.T] are split in training,
validation and test sets. Training is done on the training set, and the model with the best validation
accuracy is chosen. We will run our model only once on test set.

We will do qualitative analysis of the model by examining how the model answers questions on a
certain Wikipedia page. By looking at the datasets, we noticed that are are numerous pages that
only have one question and answer pair. So the model might just overfit the data in the sense that it
answers all the questions regarding the Wikipedia page with the single answer from the training.

We will compare our methods to a simple information retrieval/question answering algorithm as the
baseline.

3 Technical Approach and Models

In this work we explore the use of Dynamic Memory Networks introduced by [3]], as an improvement
over the initial memory networks in [4] which seems to show better performance on bAbI tasks. We
leveraged a DMN implementation in Theano from [7] as our starting point. We tested the model on
bAbI task 1, which is the single supporting task, and it gave 100% training and validation accuracies.
The result for the remaining bAbI tasks are also at the expected levels and are linked in the references
section.



4 Baseline

A baseline question answering algorithm based on similarity of the question to the input facts was
implemented. A moving window of fixed size is passed over the input facts. For each window, the
common words between question and the answer are selected. The similarity score is the sum of
the inverse document frequency of the words common between the question and the answer. The
window with the highest score is selected. If the correct answer is contained in the selected window,
then the algorithm has successfully found the answer. The results in table [T] show the baseline
performance over our dataset.

Window Size Train Test | Validation
3 1.5% | 0.3 % 0%
5 57% | 0.4% 1.4%
Lenght of the Question | 10.1% | 6% 5%

Table 1: Baseline Performance

As it can be seen from the table, the accuracy is in single digits. The larger the size of the window,
the better the accuracy is due to the fact that the correct answer word has more chances of being
contained in the window with the highest similarity score.

It is worth mentioning that this baseline is O(1) in training and O(N * L) in test time, where N and
L are input and window sizes respectively.

S Dynamic Memory Network Model
We use DMN model from [3]]. The model consists of four modules:

5.1 Input module

This module creates a continuous vector representations for the inputs sentences. First, each input
sentence is terminated with an end of sentence token (EOS). Then, all the sentences are concatenated
together and fed word by word to an RNN. The hidden state at each EOS token is selected as the
hidden state of the corresponding sentence: hy = RN N (L[w;], ht—1). L represents the word vector
representation of the word w;. We leveraged pre-trained GloVe vectors [6] in this project. The GRU
is defined as below (following the notations of [3[]):
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Where W& W) W e Rruaxnr and UR) UM U € R >z, is the input at index ¢. Again,
as in [3], the above operations are shortened into hy = GRU (x4, hy—1) where x; = L[w,].

5.2 Question Module

This module encodes the question from a sequence of words to a continuous vector representation.
A GRU similar to the input module is used for this task. Using the abbreviated notation: ¢, =
GRU(L[w®], ¢t—1). w? indicates the t'* word of the question. It is important to note that the
parameters used in the question module GRU are different than the ones used in the input GRU.

5.3 Episodic Memory Module

The purpose of this module is to create a continuous vector representation by combining the com-
puted input representations and the question representation, to be fed into the answer module. This
acts as the main inference module of the model. In each memory hop ¢, an episode e* is generated



using an attention mechanism which takes the question representation, input representations and
previous memory (m’~!) as input. This episode alongside the previous memory is fed into a GRU
to generate the new memory m*.

Having this episodic memory that passes multiple times (episodes) over the input given the question,
gives the model the ability to answer questions when multiple supporting facts are needed. This
might not be very useful in the dataset that we have, as most of the questions require only one
supporting fact. but for applications that need multi-episode reasoning, this can be very helpful. In
the implementation, we fix the number of times that the input facts are iterated over. The equations
below describe the memory module following the notation from [3]].

The attention mechanism consists of a set of attention gates, one for each input fact. A gate out-
puts a number between zero and one which is regulated by the input fact representation, question
representation and previous memory representation. It is implemented with a two layer feedforward
neural network:

2(e,m,q) = [e;m, g, cogq,com, e — gl e — ml, "W q, "W m] (5)
Gle,m,q) = o(WPtanh(W WM z(¢,m, q) + b)) + b)), (6)
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The memory update mechanism can be broken down into two parts: producing episode representa-
tions and producing memory representations.

The representation of each episode is taken to be the last hidden state of a GRU over every input
representation weighted by their respective attention gates. In a sense, it is a soft combination of the
most relevant input facts:

et — h%“C’ 9

The current memory representation is given by the current hidden state of a GRU given the current
episode representation and previous memory representation:

m' = GRU (e, m'™!) (10)

Where ¢, m, g represent the set of inputs, memory and the question, respectively. T'C' indicates the
number of inputs. The superscript i represents the memory pass (episode) index, and ¢ the input fact
index (note that every sentence is one input fact). It is also worth noting that in our experiments we
initialized the hidden state of the memory GRU with zeros.

5.4 Answer Module

The answer module is responsible for generating the answer word. Since we only do questions with
single word answers, our answer module is a simple feedforward softmax layer. The input to this
layer is the last memory and the question. We chose to add the question vector as a direct input to
this layer to make sure that the influence of the question on the output answer does not fade over the
episodic memory module. This is important, as the model can otherwise simply overfit the training
input facts, without considering the question, if there are not enough questions per set of facts. The
answer module can be described as follows:

y = softmaz(W g, a)) (11)
a=m™™ (12)

T M indicates the last memory index. The output y is the probability distribution of the answer over
the vocabulary. The index with the highest probability is the output answer word.

6 Experiments & Results

As a first approach we leveraged an existing implementation of Dynamic Memory Networks [7]]
which followed [3].
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Figure 1: Training and validation accuracy on DS1 vs DS2

We used Theano as the deep learning framework. The hardware we used is the NVIDIA Titan X
GPU that has 12 GB of memory. The models were all trained in batches of size 64.

We started with DS1 for training. Each QA pair is accompanied by 150 to 200 Wikipedia sentences
(i.e. our input facts). On training the DMN model for 10 epochs on this data we obtained 5.31%
validation accuracy and 5.62% train accuracy. These low accuracy values could indicate underfitting.

As the first step, we wanted to make sure that the model is large enough to overfit the data. So we fed
25 tuples of inputs, question and answers. We noticed that with hidden dimension size of 40, after
500 epochs, the model can not reach accuracy higher than 52%. We increased the hidden dimension
size to 400, and the model could reach 100% accuracy within 30 epochs. This proved that the model
can in fact overfit the data with higher hidden dimension sizes.

Vocabulary Restriction

Increasing the hidden dimension size to 400 caused the model to become too big for the hardware
to handle in terms of the memory when training on DS1. In order to tackle this issue, we looked at
restricting the vocabulary size. We noticed that the size of raw vocabulary is over 370k words, as it
includes lots of low frequency and rare words. We did the following to cut the size. First we assign
one word vector to all the words that do not exist in the GloVe [[6]. Second, we discarded all the
words that have term frequency of less than 100 occurences over the entire corpus, except the words
that have occurred as answers. This reduced the vocabulary size to 27k words. Having this, we were
able to apply higher values of the hidden dimension size.

With this vocabulary restriction, we used hidden dimension size of 400, and word vector dimension
of 50 on dataset DS1. As it can be seen in figure [I] the model is able to reach training accuracy
of 98% and validation accuracy of 72% within 200 epochs. These values are far higher than the
baseline, and at the first glance seem very interesting. No regularization or dropout was used in this
run.

We tested the model by inputting it a Wikipedia page from the training data, and asked questions
about the page. We noticed that the model outputs the same answer for nearly all the questions
asked about the page, and the answer being the highest frequency answer of the questions associated
with that page. This is an artifact of the way the split is done over the train/validation/test sets.
Let us say that for page pl, there has been 10 questions with the same answer al, and we did the
random splitting. If the model learns to only answer al to any question from p1, it will be able to
achieve 100% accuracy across both train and validation. However, when testing, the answer would
be independent of the question, which is highly undesirable.

The first idea we had to tackle this issue was to have a smarter split between train and validation
sets so that there is no Wikipedia page common between those sets. We tried it with DS2, which



removes the restriction on using only top 1,000 URLs. We also reduced the hidden layer dimension
to 200 to decrease the potential overfitting. Figure |1{shows the accuracy of the model over training
and validation sets in 27 epochs. We only did this amount of epochs for two reasons. 20% dropout
was applied here to counter overfitting.

Input Facts Trimming

Another issue that we needed to tackle before being able to run the model over DS2, was the large
amount of input facts. Since the data comes from Wikipedia pages, there could be input facts
(sentences) which are longer than 100 words. The number of the inputs also can increase very fast
if the page is too long. This slows down the training extremely, since the input module needs to
be unrolled to a proportional number of time steps for backpropagation. We decided to trim the
inputs in two ways: first, only the first 20 words of each input fact were used. Second, only 50 facts
were randomly chosen among the input facts to each question and answer pair, while maintaining
their ordering. The model works as a classifier to select the answer word given the encoding of
the question and the answer. Since our data is sparse for majority of the pages, the model will not
be able to learn detailed semantics and syntactic structures of input facts and questions. Rather, it
will learn the classification by seeing a representation of the input facts and the question. From this
perspective the approximation provided us with a reasonable trade-off.
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Figure 2: Training and validation accuracy on DS3

As it can be seen in figure [Ib, the validation accuracy is not promising, considering the training
accuracy is over 98% while the validation accuracy is around 10%, which clearly shows the model
has overfitted. Fortunately, with the more appropriate splitting of the training and validation set,
we can see this effect clearly in this case. One issue that we noticed could be the root cause here,
was that a large number of the answers only have one question associated with them in DS2. These
samples can have adverse effect by making the model overfit, as the model will not be able to learn
any useful features for these answers, except overfitting to map one set of inputs and one question to
one output. One idea that we explored to solve this issue was to focus on samples where the answer
has multiple questions associated with it in the corpus. This was the idea behind DS3.

Figure [2] shows the results with DS3 with 100 dimensional hidden layers and 5 episodic memory
hops. As it can be seen, the validation accuracy is slightly higher than the ones with DS1 and DS2.
It could achieve 17% at epoch 60. However, it is still much lower than the training accuracy, meaning
the model is still highly overfitted. It is worth to mention that we do the improved splitting of the
data in DS3 as we mentioned previously. Our best model could achieve 99% train, 30% validation,
19% test accuracies.



6.1 Hyperparameter Tunning

We experimented with changing the size of hidden dimensions, memory hops, L2 regularization
and dropout as the hyperparameters of the model. As the first parameter, we changed the number of
memory hops from 3 to 6.

100, Training and Validation Accuracies vs Epochs

Validation accuracy 5 hops
train accuracy 3 hops
Validation accuracy 3 hops
train accuracy 4 hops
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Figure 3: Memory Hops

Figure [3] depicts the results. The results are quite interesting. The lower the number of memory
hops, the better the validation accuracy. We believe this is because of the fact that most of the ques-
tion/answers are single supporting fact and informational queries that do not require much inference
among multiple supporting facts. In these cases, doing multiple hops over the episodic memory
module could potentially worsen the results as the probabilities could spread across the memories.

We also experimented with changing the hidden layer size. There were very minor differences when
changing the size. We were able to see the training achieve accuracy of 98% even with hidden state
dimensionality of 50. This is due to the fact that input is trimmed by randomly selecting 50 facts, as
mentioned in

We ran the training with dropout values of 0.2, 0.3, 0.4, 0.5. We noticed that at the lower than
0.5 values, there were very marginal differences in the training and validation accuracies. For 0.5,
there was a drop in the training accuracy, but validation accuracy was close to the values with lower
dropouts. Although dropout has shown to be capable of reducing overfitting, we believe the bigger
problem of data sparsity eclipses the ability of overfitting reduction methods such as dropout and
regularization.

6.2 Episodic Memory Analysis

We executed the trained model over a few of our training and validation examples. Both for correct
and incorrect predictions no meaningful pattern could be observed. The gates seemed to behave
randomly with respect to the question and generated answer. This can be observed in table 2] which
contains the attention scores on facts for the following question:

Question: how many states are required to ratify the constitution?
True answer: nine

Predicted answer: nine



Fact Episode 1 | Episode 2 | Episode 3
ratification in the united states constitution 19 10 10
it required that conventions of **nine** of the thirteen | 18 15 11
original states ratify the constitution

if fewer than thirteen states ratified document it would | 28 19 16
become effective only among the states ratifying it

ratification by those states was secured virginia on june | 40 20 18
two five and new york on july two six and the

for subsequent amendments article five describes the pro- | 37 31 36
cess of a potential amendment s adoption

proposals to adopt an amendment may be called either by | 24 12 12
a two thirds vote by both houses of congress or

for an amendment to be adopted three quarters of the | 28 17 16
states presently at least three eight out of five zero

a deliberative assembly using parliamentary procedure | 20 10 9
could ratify action that otherwise was not validly taken

Table 2: Attention scores (in percentage) on facts over different episodes

Note that the answer nine” has been highlighted in the second row in table [2|for the reader’s benefit
and it is not so in the training set. Also note that we used the DMN variant that models each attention
gate as an independent binary random variable (with a sigmoid layer), so the total probability over
different gates does not necessarily sum to one. The expected ideal pattern is that the attention gates
could further narrow down on the most relevant facts with every passing episode. Unfortunately this
is not observed, probably largely due to the data sparsity issues that were previously mentioned.

Conclusion and Further Work

In this project, we explored the idea of using Dynamic Memory Networks for the task of question
answering from raw Wikipedia pages. We started by using a naive baseline, based on similarity of
the question to the input facts. The accuracy of the baseline was below 10% for all the window
sizes. We used the DMN implementation by [7], and tried three different datasets, each based on
the insight that we received from training and testing the model. Our best model was able to achieve
19% accuracy over the validation set.

One of the main issues with training such model was the sparsity of question/answers for each page.
This caused the model to fit to the training data, but without the same level of performance over the
validation/test sets. Increasing the size of dataset will definitely help to tackle the overfitting issue.

Question answering from raw text is a very challenging task for deep learning based models, as the
size of the input per sample is huge, and it is difficult for the model to be able to learn semantic
and syntactic structures and relationships in the input facts to answer the question in the manner that
humans do. Comparing this to bAbI tasks, both the vocabulary size, from which the answer module
should generate the answer word, and the size of the input facts are both drastically smaller for the
bADbI.

As future direction for this work, one should design a mechanism to more intelligently focus on the
important input facts. The raw input facts are simply too diverse and too large for the model to be
able to learn any useful features.

Another idea is to include the samples with answers longer than one word. This will help with
increasing the dataset size. As we mentioned, our initial dataset had the size of more than 700k.
However, this will add another dimension of complexity to the problem, which is to generate plau-
sible sequences of words.
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