
Using Contextual Information for Neural Natural Language Inference

Billovits, C.
cjbillov@stanford.edu

Eric, M.
meric@cs.stanford.edu

1. Introduction

The advent of such commercial natural language in-
terfaces as Siri, Google Now, and Cortana has made
it clear that full semantic language understanding is
one of the great contemporary problems of artificial
intelligence. Developing a system with this power is
immensely difficult because of the complexity of hu-
man text. A system with full semantic understanding
would need to be capable of handling all the tricky as-
pects of language including named entity disambigua-
tion, coreference resolution, and relation extraction.
Moreover, it would need to have a grounded knowl-
edge base of the world, being able interpret common
sense facts and draw logical inferences among linguis-
tic statements. Recognizing textual entailment rela-
tions is a cornerstone problem in the path to achieving
true semantic understanding. Given two sentences S1

and S2, this problem seeks to determine the relation-
ship between the two statements. Common classes of
relationships include entailment (S2 logically follows
from S1), contradiction (S2 is not logically consistent
with S1), and neutrality (S2 is logically independent of
S1).

This task is performed with ease by humans, who
have years of practice as agents in real world scenar-
ios and processors of common sense knowledge, but
is one of the hardest problems in automated natural
language understanding. For a machine to recognize
textual entailment well, it has to have a nuanced under-
standing of the sentences and be able to figure out both
general semantics (with reference to world knowledge)
and also the particular logical structure of the sen-
tences (so that, for example, the system can tell that
the addition of the word “no” takes the sentence pair
from entailment to contradiction). In this work, we
explore novel neural architectures aimed at encoding

both logical structure and general semantics.
The remainder of our paper is structured as follows:

Section 2 discusses existing work in natural language
inference (NLI) with an emphasis on recent neural
network-based architectures. Section 3 discusses ex-
isting inference datasets and the nuances each bring
to NLI. Section 4 enumerates the approaches we in-
vestigated. Section 5 quantifies our initial results and
documents our efforts to improve on the initial results.
Finally, Section 6 discusses next areas of exploration.

2. Background

Neural network-based models are a more recent ap-
proach for natural language inference. Bowman et.
al. have investigated the use of tree-structured neu-
ral networks for extracting semantic meaning and have
demonstrated through solid performance on the Sen-
tences Including Compositional Knowledge dataset,
that neural models show great promise for helping arti-
ficial systems learn logical semantics. [8], [2] Bowman
et. al. also used recurrent networks with a long short-
term (LSTM) memory unit to perform inference on the
recently released Stanford Natural Language Inference
(SNLI) dataset, achieving comparable performance to
a strong lexicalized classifier system. [3]

More recently, Rocktaschel et. al. presented an end-
to-end sequential LSTM model with a word-by-word
attention mechanism that was able to achieve state-
of-the-art on the SNLI dataset. [9] Forays with more
general memory structures have also seen success on
SNLI. Notably, Cheng et. al. use a novel LSTM unit
that unwinds the cell and hidden states onto a dynamic
memory tape at each time step, using attention to com-
pute new hidden and cell states [6] This architecture
holds state-of-the-art on SNLI as well as meeting close
to state-of-the-art performance on language modeling
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and sentiment analysis.

A few papers have also focused using improved sen-
tence embeddings for NLI. For example, Bowman et
al. 2016 use a neural stack-based shift-reduce parser to
efficiently incorporate tree-structured information. [4]

3. Datasets

3.1. SICK

Prior to the release of SNLI, the largest inference
corpus available was the Sentences Involving Compo-
sitional Knowledge (SICK) dataset. At roughly 10,000
premise-hypothesis sentence pairs, SICK forms a
moderately-sized testing bed for traditional statistical
approaches for NLI. As Bowman et. al. demonstrated,
pure neural architectures tend to perform poorly when
trained with the SICK dataset alone.

However, since explicit use of world knowledge
was obviated from SICK, comparing neural models
against each other using SICK may shed light on the
extent to which models learn compositional semantics.
For example, many contradictory examples in SICK
are formed synthetically with negation. In lexicalized
machine-learning approaches, brittle negation features
can significantly boost performance [1] [7]. Neural
model founded on continuous vector representations
would have to distinguish sentences based on just a
negation word vector, which can also inherit general
semantic ambiguities (e.g. prepositional attachment,
coreference resolution).

3.2. SNLI

The bulk of development for this paper was done
using the recently released SNLI dataset. At 570,152
sentence pairs, it is the largest NLI corpus avail-
able. The data is divided into train/dev/test splits
with 550,152/10,000/10,000 sentence pairs respec-
tively. The splits also have vocabularies of size
42,382/6,861/7,012 unique tokens respectively. The
3 class labels are also all equally represented in the
dataset. Below we present the distribution of sentence
length in the corpus:

Figure 1: SNLI sentence length distribution

Sentence length is approximately Poisson dis-
tributed, with premise sentences generally longer than
their hypothesis counterparts. As many premise sen-
tences contain more than 20 words, models seeking
performance must have the capacity to handle long-
term lexical dependencies.

The SNLI dataset was collected through completion
of a cleverly designed image-captioning task. Unlike
SICK, SNLI does not explicitly obviate the necessity
for world knowledge, and in fact derives much of its
semantic complexity from the need to make use of
common-sense grounding. This observation inspires
the intuition that using an external memory tape or col-
lection of external memories could be useful for keep-
ing track of relevant world knowledge that complex
neural NLI architectures can utilize to inform their un-
derstanding of sentence-level semantics.

Lexicalized classifiers perform moderately worse
on SNLI than neural models: aggregate three-class
F1 for a state-of-the art lexicalized classifier is
78.2, whereas state-of-the-art on neural models is the
LSTMN in Cheng et al. 2016 [6], achieving 86.3.

4. Approach

4.1. Baselines

The first neural baseline we have considered and
implemented is a simple sum of embeddings classi-
fier. The model is organized as follows: sum 100-
dimensional pre-trained GloVe embeddings of all the
tokens in the premise. Do the same for the hypothesis
of the data sample. Concatenate these two output vec-



tors and then feed them through three fully-connected
layers each of which is followed by a tanh nonlinearity
and has a 200-dimensional hidden layer. Take the fi-
nal output layer and apply a softmax transformation to
get a three way probability distribution over the labels,
and use this distribution to compute a cross-entropy
loss. This simplistic model is not expected to do ex-
traordinarily well, but with some fine-grained tuning,
Bowman et. al. suggest that the model should be able
to achieve up to 79.3%/75.3% train/test accuracy. Fur-
ther it is the simplest example of a neural architecture
that is expected to learn some of the semantic com-
plexity of the SNLI dataset.

4.2. Initial Attempt at Recurrent Architectures

A natural extension to the preceding baseline is
to replace the lowermost sum-of-word-embeddings
layer with a premise LSTM layer and an LSTM layer
[10], whose hidden states are concatenated and then
fed through the fully-connected components as be-
fore. The GloVe embeddings fed into the LSTM are
again 100-dimensional and produce 100 dimensional
hidden-states. The fully-connected layers are also 200-
dimensional. Bowman et. al. report a performance of
84.8%/77.6% on the train/test splits of SNLI. We reim-
plemented a similarly shallow architecture with differ-
ent training parameters, with the intent of stacking the
pre-trained LSTM inside our architecture to provide
sentence embeddings for the input premise-hypothesis
pairs. We refer to this model as the Pair-LSTM in the
results below.

4.3. Memory Tape Architectures: Desiderata

In question-answering tasks, various memory tapes
have been explored to emulate approximate informa-
tion retrieval, with various levels of supervision. In its
simplest form, question-answering gives a background
series of sentences describing the world, and then asks
a question, whose answer is a word or sequence of
words in the vocabulary. Many earlier models have
used supervision of supporting facts [13] to determine
which memory cells are relevant. Suukbaatar et al.
2015 use a deep hierarchical attention model to dis-
cover relevant facts [11], utilizing content and address-
based access to the memory tape.

While question-answering tasks generally have a
small fixed context per example, our goal for NLI is
to allow for unbounded memory tape sizes, and po-
tentially leverage various inter-sentence facts about the
world. We decided that the weakly supervised end-to-
end approach in [11] is most fitting, as the candidate
memory set may not always contain relevant mem-
ories, or even encode mutually reconcilable worlds.
Thus, some sort of attention model between sentences
is appropriate.

Another prime consideration is the granularity of at-
tention on memories. State-of-the-art recurrent models
employ word-level granularity, but cannot use world
knowledge effectively. To ensure memories do not
depend on hidden elements of their derivative sen-
tence, we restrict our memory tape to represent con-
tiguous premise and hypothesis sentence pairs, instead
of clauses or predicates.



Figure 2: a) A single memory lookup layer. b) Three phases of memory lookup, followed by a classification layer

We built an end-to-end memory network following
the standard positional encoding and temporal encod-
ing strategy in Suukbaatar 2015 [11], as well as the
hierarchical soft attention model that selects relevant
memories in sequential phases (hops). Each layer uses
tied word embeddings between layers, and tied word
embeddings for both memories and training examples
alike.

Temporal encoding is restricted to distinct premise-
hypothesis pairs, with no attempt to induce temporal
dependencies between training set examples. We force
premise and hypotheses sentences to be an atomic unit
in the memory tape, so that the temporal encoding can
learn arbitrary inter-sentence positional importance via
backpropagation. Currently, one temporal encoding
strategy is shared across layers and memory / question
processing. A promising future direction is to gener-
alize this idea and form a ”lexicalized” temporal en-
coding tensor, which selects the appropriate temporal
filter with attention.

Figure 3: Positional/Temporal Encoding

Finally, the output of the memory network is modi-
fied with a separate affine layer taking the output vec-
tor to the three labels. The model was fit with a soft-
max prediction function and multi-class cross-entropy
loss function.

4.4. Memory Tape Architectures: Memory Con-

tents

Soft, dense attention models used for averaging tend
to scale poorly over large inputs. Because the ex-
pected relevance per example is low, for any quasi-
exponential underlying relevance distribution, most of
the probability mass will be allocated to irrelevant vec-
tors. Further, as the softmax probability distribution is
stretched across many candidates, gradients are atten-
uated significantly, especially in a multi-hop network.
Thus, the working candidate set of memories must re-
main small in order to use attention effectively.

Again, the tradeoffs between global contexts and
local contexts comes into play. We use fixed con-
text sized n corresponding to arbitrary n premise-
hypothesis pairs, which encodes a dependency graph
of degree n. Our rationale is that fixing the degree of
this dependency graph between training examples and
their support should aid in convergence for the word
embeddings, and reduce variability between runs. Any



sort of attention or parametric computation to rank a
very large corpus of memories quickly becomes com-
putationally intractable, so subsampling is necessary if
each example should be able to draw support from any
and all facts.

Since as mentioned in the previous section, dis-
joint examples needn’t represent mutually compatible
worlds, our proposed method to globally select a can-
didate memory set was reinforcement learning. Ac-
cording to an exploration-exploitation hyperparameter
⌘, explore by sampling according to a multinomial dis-
tribution (policy) over all facts. During backpropaga-
tion, update the multinomial distribution probabilities,
preserving the expectation across the selected exam-
ples; that is, constrain

E[p(i)
before

] = E[p(i)
after

] (1)

and append the highly-attended memories to an
LRU cache, using a threshold parameter ⌧ ). Under ex-
ploitation, just take memories from the cache.

The specified algorithm retains locally relevant con-
texts in the cache if there is semantic locality within
a batch, and retains globally relevant contexts when
there is no such locality. Further, it is stable because
unseen examples would not be penalized during ex-
ploration. Finally, it is piecewise continuous, and thus
differentiable, so it can be included in an end-to-end
network easily, unlike a nearest-neighbors algorithm.

Over time, as ⌘ is annealed, globally relevant con-
texts are likely to be sampled and to appear in the
cache. Unfortunately, due to time constraints, we are
not able to report results of selecting contexts globally
using this algorithm.

4.5. Miscellaneous

We built our models and test infrastructure using
Theano and Lasagne [12]. Our models were trained
on a single Nvidia GTX750M GPU and an Nvidia
GeForce GTX Titan X. Source code can be found at
https://github.com/mihail911/NNLI.

For the memory networks, we first built a replica of
the model and hyperparameters found in [11], and ver-
ified its performance on the bAbI synthetic question-
answering set with the paper’s results to ensure cor-
rectness, before using components for NLI. To this
end, we were able to pass all tasks that Suukbaatar et

al. pass, and achieve accuracy within 5% for the tasks
that do not.

During training, we ended up using Adam to opti-
mize all of our published models. The learning rate
was annealed exponentially every tenth epoch. We ter-
minated learning early once dev accuracy failed to im-
prove after 2 epochs, and report our best train and de-
velopment set F1 scores.

5. Results and Discussion

5.1. Experiments with SICK

As discussed in Section 2.1, we initially thought
SICK would be a useful prototyping dataset to as-
sess the extent to which our neural models might
learn compositional semantics without world knowl-
edge. We found that of our baselines, the sum-of-
embeddings model achieved our best results, while the
memory network lagged significantly. We modified
the number of memory selection layers from a single
hop to 9 hops, and tried contexts varying from 1 sen-
tence to 100, but none of the models could reach 0.60
F1 on the development set.

Architecture SICK Train F1 SICK Dev F1
SumEmbeddings 0.95 0.75

SentLSTM 0.96 0.74
MemNet 1.00 0.58

RNN 0.98 0.77 (test)
LaiMaxEnt – 0.845 (test)

Figure 4: SICK evaluation results. Memnet achieved

best results with n hops = 5 and context size = 6.

RNN, the recursive neural network detailed in [5], is

the best neural architecture on SICK. LaiMaxEnt is the

current state-of-the-art classifier on SICK for RTE [7]

The heavy reliance of the Memory network on cus-
tom word embeddings and thus accurate counting
statistics is a likely culprit for its especially poor per-
formance on SICK. In the 4500 train examples, there
are ⇠2400 distinct tokens, for around 3.9 sentences
per token. By contrast, the train set for SNLI has
25.95 sentences per token, nearly an order of magni-
tude higher, which differing sentence lengths do not
compensate for. Simply, the SNLI train set provides
more support examples for a given token, and can pro-
duce word representations that are more likely to gen-



eralize to unseen examples. The rest of our experi-
ments were performed on SNLI.

5.2. SNLI Memory Network Results

We performed a series of experiments of our end-
to-end memory network implementation to the SNLI
dataset. In particular, we were interested in seeing how
modifying a few of the fundamental parameters of the
memory network architecture would impact the per-
formance on SNLI. The number of hops of inference
as well as the number of context sentences used as part
of the memory both may greatly influence the model’s
ability to learn accurate representations of the dataset
semantics. The results on the SNLI dev set as we var-
ied the number of hops of inference and size of the
memory are shown below:

As we vary the number of hops our performance on
dev increases from around 67.5% F1 to a maximum of
around 70.3%. Our results indicate that the number of
hops of inference will tend to monotonically improve
the performance of the model to a local optimum af-

ter which additional number of hops only degrade the
performance. As we endow the model with additional
hops, we are allowing for more opportunity for the
model to use the weight-representations of the context
premise-hypothesis pairs to interact with query input
and thereby incorporate more information from the
model memory.

In general, we would expect additional hops to help
the model to learn more complex semantic informa-
tion over the memories and further inform its under-
standing of the relationship between the input premise
and hypothesis. However, in this scheme, the extent
to which this semantic information is useful to the
model’s understanding of the premise-hypothesis is
very sensitive to the relevance of the chosen context.
Consider that our most basic context selection scheme
chooses a fixed set of contexts from the training set
which could potentially provide little semantically rel-
evant information. If the context is not relevant, then
our model will essentially add noise to the query and
additional hops will only add extra layers of noise that
could obfuscate the model’s understanding of the in-
put. These observations are corroborated by our results
as we varied the number of hops parameter. Recall that
the nonlinearity in our architecture comes from the at-
tention mechanism; if the context were equivalent to
the question, then the network is a essentially glorified
log-linear model.

As we vary the size of the context set, our per-
formance on dev increases from around 68.3% F1 to
around 71.5%. Our results indicate a fairly mono-
tonic increase in F1 as context size is increased with
an eventual plateau in performance. It appears that
endowing the model with a larger memory can offset
the somewhat simplistic context selection scheme so
that even if the context sentences chosen are not es-
pecially relevant to the input, the fact that there are
many of them, the model can simply have its attention
mechanism learn appropriate relative weighting of the
context sentences. In this way, the model is less sus-
ceptible to having its understanding of the query input
compromised by noisy or insufficient semantic repre-
sentations. However, after a certain point, we see less
salient gains in F1 as simply having a boundless num-
ber of irrelevant sentences will not tend to better in-



form the model’s understanding of the relationship be-
tween the input premise and hypothesis. Hence the in-
creased benefit of more memories becomes less promi-
nent.

Below we have our best performing models for the
various architectures and design decisions explored:

Model Train Acc. Dev Acc.

Sum-of-embeddings 0.65 0.68
Pair-LSTM 0.875 0.795

Mem Net - Context Size 0.76 0.716
Mem Net - # Hops 0.79 0.703

Figure 5: SNLI evaluation results. Note that the Mem

Net train accuracies are artificially low because auto-

matic termination was invoked after only a few epochs.

We note that the sum-of-embeddings model does
not perform as well as the results reported by Bowman
et. al. This is not particularly surprising as we spent
no time doing extensive hyperparameter searches of
the model, and we do not know the exact training de-
tails of Bowman’s model. Further, as it was a baseline,
we were not especially concerned with maximizing the
performance of this architecture on the SNLI.

Our Pair-LSTM architecture performed comparably
to the results reported by Bowman. Here we were
more interested in getting good performance of the
model on SNLI, as we considered the possibility of
using the sentence embeddings of LSTM layer of the
model to inform a memory network layer that would
be stacked on top of the LSTM.

We also report the best performing memory net-
work architectures with the optimally selected context
size and number of hops respectively. Though these
memory networks do perform above baseline, we can
attribute the somewhat subpar overall performance to
the lack of powerful sentence embeddings. For exam-
ple, all memory architectures we trained were able to
eventually achieve very good performance on the train
set, getting above 95% within 20 epochs. However, the
general trend we observed was that the performance
on the dev set would usually climb at first and then
peak around the 2-4 epochs, indicating that the models
were struggling to transfer over their knowledge from
the train set to the dev set. Below we propose a num-
ber of additions to the model that can be explored in
future work.

6. Future Work

Future work should investigate the use of enhanced
sentence embeddings. Given that the our PairLSTM
model nearly achieves 80% dev set accuracy with a
rudimentary feedforward network stacked on top of
sentence embeddings, we expect to see similar re-
sults from using LSTM-generated sentence embed-
dings to enhance the hierarchical memory attention of
the memory network to similar levels. In addition,
we expect this to improve the performance of deeper
memory networks with multiple hops.

Given that any end-to-end memory network archi-
tecture will be sensitive to the selection of contexts that
form its memory, in the future we may also investigate
gating mechanisms to ensure that the model’s learn-
ing is not tarnished through weighted combinations
of noisy context sentences with the query premise-
hypothesis. A simple first-pass at this idea may involve
using a forget-gate at the uppermost layer of the mem-
ory network right before the final summation with the
query that is fed as input to the softmax transforma-
tion. The hope is that if there are particularly noisy
contexts, a forget-gate will learn to put less emphasis
on the context in the weighted combination with the
query.

Lastly, future work should experiment with select-
ing contexts globally using our sampling algorithm or
a similar annealed exploration approach. Overall, we
find little benefit in the convergence of locally deter-
mined contexts. Exploring sparse attention measures
could be useful when using a large candidate memory
set (in the hundreds or thousands of entries).
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