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Abstract

We explore how deep recurrent neural network (RNN) architectures can be used to
capture the structure within a genetic sequence. We first confirm that a character-
level RNN can capture the non-random parts of DNA by comparing the perplexity
obtained after training on a real genome to that obtained after training on a random
sequence of nucleotides. We then train a bidirectional character-level RNN to pre-
dict whether a given genomic sequence will interact with a variety of transcription
factors, DNase I hypersensitive sites, and histone marks. Because multiple bi-
ological objects can interact with a given sequence, we cast this latter problem
as a multitask learning problem. We empirically show how a deep network can
outperform a baseline model on a significant majority of 919 binary labeling tasks.

1 Introduction

In recent years, deep recurrent neural networks (RNNs) have allowed researchers to tackle a variety
of machine learning problems in the domain of natural language processing. Most of these appli-
cations investigate problems such as translation, named entity recognition, and sentiment analysis.
Less work has been done with RNNs on what is perhaps the most natural language: the genome, a
sequence of four letters (A, C, G, T). The purpose of this project is to explore how an RNN archi-
tecture can be used to learn sequential patterns in genomic sequences.

To confirm that an RNN can model the structure within a genomic sequence, we first train a simple
character-level RNN to predict one of the four possible characters given the previous string of char-
acters. If the ability of an RNN to predict the next character for a real genome is the same as for a
random genome, then we will have to more carefully tweak our model until we can identify some
signal. We will also use this simpler task to help choose a proper model architecture.

Once we have empirical evidence that an RNN can capture the non-random structure within a
genome, we explore a sequence classification problem. Epigenetics is the study of how the genome
is regulated by external factors. Biological experiments have shown that subsequences of the human
genome are often regulated by both nearby and very distant sequences Specifically, biologists have
been able to identify whether a particular genomic feature will be observed for a particular sequence.
Examples of these features include

1. Transcription factors: proteins that bind to a particular sequence

2. DNase I hypersensitive sites: sequences that are sensitive to cleavage by the DNase I en-
zyme

3. Histone marks: chemical modifications to histone proteins, biomolecules which regulate
certain sequences.
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These results are available via the ENCODE [2] and Roadmap Epigenomics [5] data releases. For
each of many features, we will assess an RNN’s ability to predict whether a given feature will be
present using only the sequence and no additional outside information.

2 Related work

Several deep genomic models have emerged in the past year, and the ones discussed below attempt
to predict whether a certain genomic feature will be observed at a particular sequence.

Two tools were published in August 2015. DeepSEA [7] performs prediction based solely on a
fixed-length genomic sequence. The authors used a deep convolutional neural network (CNN) over
an input sequence, alternating between convolutional and pooling layers to extract sequence fea-
tures. They used a sigmoid output layer to compute the probability of seeing a particular genomic
feature. DeepBind [1] also used a deep CNN with 4 stages of convolution, rectification, pooling,
and some nonlinearity. Unlike for DeepSEA, DeepBind accommodated varying-length inputs and
also incorporated extra information in addition to just the input sequence. This extra information
came from known facts about a particular sequence gathered from other experiments. Basset [3]
was published a few months later in October 2015. This tool likewise used a deep CNN architecture
to learn the functional activity of genomics sequences.

DanQ [6], published in December 2015, incorporated a bidirectional long-short-term-memory
(LSTM) RNN on top of the outputs of a max pooling layer after convolution on the input sequence.

Each of these tools fed a one-hot encoding of an input sequence into a convolution layer. In other
words, the networks operated on a 4× L matrix obtained from a length-L sequence.

Additionally, each tool discussed above used a convolutional layer first. Convolutional layers re-
quire fixed sizes (e.g. each convolution is over a specific number of input characters), which is
disadvantageous when one does not know the exact sizes of important subsequences. Introducing
several different sets of convolutions with fully connected layers introduces several more parame-
ters. For these reasons, a recurrent neural network with no convolutional layers seems a reasonable
first approach for analyzing genomic sequences.

3 Approach

All RNN models in this project were built using Google’s TensorFlow Python package. For the
character-level genome modeling task, we test a variety of RNN-based neural network architectures
including gated recurrent units (GRUs) and long-short-term-memory RNNs (LSTMs). We experi-
ment with a variety of hyperparameters on multiple genomes in order to assess the robustness of a
given model. We measure the ability of a model to fit a given dataset using the average perplexity
across all character prediction tasks:
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where n is the number of training samples (roughly the length of our genome), |V | is the size of our
prediction set (4, representing the 4 nucleotides), ŷ(t)i is the predicted probability of the predicted
word at time t being word i, and y(t) is a one-hot vector describing the actual word at time t.

From the above experiment, we select a cell type to use for the multitask learning model. We use a
bidirectional GRU for character-level processing. Each character in the input sequence is mapped to
some low-dimensional embedding. Intuitively, a genetic sequence can be regulated by both flanking
sequences, and therefore bidirectionality is a crucial part of the architecture. The outputs of the
forward and backward RNNs are fed through a softmax layer. For each of K tasks, a prediction
of 0 or 1 is made, indicating whether or not a particular feature should be observed for the input
sequence. For all tasks, all weights are shared before the final softmax. Each task has its own weight
and bias matrices at the softmax layer. The overall architecture is summarized in Figure 1. The
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overall loss is the geometric mean of the perplexity across all K tasks. For the multitask prediction
problem, |V | equals 2, the number of classes for each task.

Figure 1: The network architecture used to perform multitask prediction for a given input genomic
sequence. Each character in the input sequence is mapped to a low-dimensional embedding, which
is fed into a bi-directional recurrent neural network consisting of gated recurrent units. The outputs
of the last GRU in the forwards and backwards RNNs are concatenated before being fed to one of
K prediction tasks. A final prediction of 1 or 0 is made for each task.

4 Experiment

Experimentation was performed by first gathering datasets of synthetic genomes, real genomes, and
sequence-label training examples. Due to the size of the training set for the multitask prediction
problem, we used a simpler problem (genome character-level prediction) to choose certain hyper-
parameters. When evaluating different RNN architectures, we compared their perplexities. When
comparing an RNN architecture against a baseline model (for classification tasks), we used the F1
score. For the multitask prediction problem, we implemented a baseline that involved both feature
extraction and logistic regression.

4.1 Dataset

For the character-level genome prediction task, four genomes were prepared:

1. A length-30,000 repeating genome where the repeated unit is AGCTTGAGGC

2. A length-30,000 random genome

3. The length-4,639,675 genome for E. coli

4. The length-23,264,338 genome for P. falsifarm
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For the multitask prediction task, we used a random subset of the dataset used in the DanQ [6] and
DeepSEA [7] papers. The dataset was collected from experiments reported in the ENCODE [2]
and Roadmap Epigenomics [5] data releases. We randomly chose 80,000 sequence-label pairs for
the training set, 8000 pairs for the testing set, and 2000 for the validation set. Each sequence has
a length of exactly 1000. All sequences are length-200 subsequences of the human genome with
400 bp flanking regions. The length-200 portion is nonoverlapping across different sequences. The
set of labels describes 919 binary prediction tasks, and each indicates whether part of a particular
sequence was observed as accessible for a particular ChIP-seq or DNase-seq experiment (i.e. if a
ChIP-seq or DNase-seq peak for a particular experiment overlaps with the 200-bp region by at least
half of the length of the peak). Both of these types of experiments evaluate the locations where
features (see introduction) can occur. The dataset is noisy, and about 10% of the tasks’ labels are all
0. In general, tasks are strongly skewed towards negative examples. For 421 of the 919 tasks, less
than 1% of the training examples are labeled 1.

Due to computational limitations, training an RNN on all 1000 characters in each example was diffi-
cult. The RNNs discussed below were instead trained on the middle 100 characters of each sequence.
For a fair comparison, the baseline model was trained on the same set of truncated sequences.

4.2 Character-Level Genome Prediction Results

For this task, our baselines were the artificial genomes (first two genomes in the list). Any model
that does not perform as expected on these two genomes will not be used for future experiments.
We wanted to perform better than the random genome, and the perplexity obtained on the repeating
genome served as an empirical lower bound. For these genomes, we used an LSTM architecture, a
dropout keep rate of 1, a batch size of 50, a sequence length of 50, a learning rate of 0.002, and 10
epochs. The achieved perplexity of the random genome was 4.003, just as expected. This is the case
when the model always assigns equal probability to each of the 4 possible characters A, C, G, T. The
achieved perplexity of the repeating genome was 1.002, which was also just as expected. Since the
sequence repeats without noise, we expect the model to be able to put all the probability mass on a
single character given the previous few characters.

For the E. coli and P. falsifarm genomes, we used a dropout keep rate of 1, a batch size of 50, and
1 epoch. We tested the GRU, LSTM, and RNN architectures, learning rates of 0.0001 and 0.0008,
sequence lengths of 50, 100, 500, and 1000, and 2 and 3 layers. The number of epochs was limited
to 1 in order to quickly test every combination of the above hyperparameters. For both genomes,
all combinations of hyperparameters performed about the same, reaching a perplexity of 3.679 for
E. coli and a perplexity of 2.938 for malaria. All training errors were continuing to decrease after 1
epoch, however, indicating that increasing the epochs would allow for even smaller perplexities.

The learning rate of 0.0001 performed worse than the learning rate of 0.0008, but this is likely
because the former was slower at updating. Both 2 and 3 layers worked about the same. Surprisingly,
50 or 100-length sequences performed better than 500 or 1000-length sequences despite the fact
that genomes often involve long-range interactions. Finally, both RNNs and GRUs appeared to
outperform LSTMs.

While the perplexity being less than random was reassuring, the results obtained here were not useful
by themselves. Genomes are known to have repeat structures in certain regions. This and the fact
that that there existed an unequal distribution of the four nucleotides can produce a lower perplexity.
Nevertheless, these experiments showed that a 2 layer network using GRUs may be appropriate for
modeling a genomic sequence. These hyperparameters will be used for training a model to handle
the primary problem in this project: multitask prediction.

4.3 Multitask Prediction Baseline and Evaluation Metric

Just as in [6], a baseline was drawn by first mapping each sequence in the training set to a feature
vector and then running the vector-label pairs through a simple logistic regression model. The
first feature mapping used involved mapping each of the 4 nucleotides to an integer 0, 1, 2, or 3. As
expected, this feature mapping performed quite poorly as the mapping failed to capture how adjacent
characters interact.
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Instead, we used a feature mapping inspired by the authors of [6]. We used a k-mer bag of
words method where each length k subsequence of an input sequence was counted. We used
k = 1, 2, 3, 4, 5, resulting in 41 + 42 + 43 + 44 + 45 = 1364 features. For example, the se-
quence ACTGG would produce a length-1364 feature vector where the entries corresponding to the
k-mers A, C, T, AC, CT, TG, GG, ACT, CTG, TGG, ACTG, CTGG, and ACTGG would each equal 1,
and the entry corresponding to G would equal 2. All other entries equal 0.

Logistic regression was performed using the Python module scikit-learn. Default parameters
were used except for the regularization constant of the `2 regularization term, which was set to
10−6. A separate logistic regression model was trained for each of the 919 tasks on all 80,000
training examples (with length-100 sequences). The performance of a model was evaluated based
on the its prediction accuracy on the 8000 training examples. Note that a validation set was not used
here; each logistic regression model was simply trained until the default tolerance of 0.0001 was
reached. Because all examples were severely skewed towards the 0 class (i.e. for all tasks, there
were significantly more examples without the feature than with the feature), the raw error rate was
not a good indicator of prediction accuracy. We instead looked at the F1 score, defined as:

F1 = 2 · precision · recall
precision + recall

where precision is the proportion of correct positive predictions, and recall is the proportion of
positive examples that received a positive prediction.

To account for the fact that less than 1% of the training examples were labeled 1, we compared the
baseline and RNN models only on tasks where at least 1% of the training examples were labeled 1
(498 of the 919 tasks).

4.4 Multitask Prediction Results

The final model used a learning rate of 0.001, the Adam Optimizer, 2 hidden layers, an embedding
size of 2 (as there were only 4 unique characters), hidden layer sizes of 128, a dropout keep prob-
ability of 0.95, and batch size of 20. The RNN was bidirectional and used GRU units with tanh
activation functions. The RNN processed all 100 characters of each input sequence. The model was
trained for 61 epochs on the 80,000 training examples, running for approximately 3 days using an
NVIDIA GRID K520 GPU on an Amazon Web Services Elastic Compute Cloud instance.

Figure 2 shows how the loss function (average perplexity across all examples and tasks) changes for
both the validation and test sets as the number of epochs increases. We see that while the training
loss continues to decrease, the validation loss has plateaued around a perplexity of 1.087.

Figure 2: The training and validation losses as functions of number of training epochs for the bidirec-
tional RNN model. Training was done with 80,000 length-100 sequences across 919 binary labeling
tasks.
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The weights from all epochs were tested on the test set. Figure 3 shows the F1 scores for logistic re-
gression (blue) and the RNN with weights corresponding to the lowest validation perplexity (green).
We also show the max F1 score achieved across all weights from all training epochs.

Figure 3: F1 scores for the logistic regression and RNN models for the 498 tasks with at least 800
positive training examples (out of 80000 total examples). The RNN epoch corresponding to the
lowest validation error was epoch 33. Tasks where logistic regression achieved an F1 score of 0
were sorted instead by the F1 scores of the RNN with weights from epoch 33.

The RNN’s optimal weights were achieved at epoch 33 where the validation perplexity achieved its
minimum of 1.084. For 498 tasks where at least 1% of the training examples were labeled 1, the
RNN with epoch 33 weights achieved a higher F1 score for 408 or 81.9% of the tasks. On average,
the RNN achieved scores that were greater by 0.091. Taking the max F1 score for each task over
all epochs, the RNN beat the logistic regression model in 471 or 94.6% of the tasks, achieving F1
scores that were greater by 0.131 on average. On average for the 498 tasks, the logistic regression
model achieved an F1 score of 0.044, and the RNN with optimal weights achieved an F1 score of
0.135. When enough positive training examples were present, the RNN outperformed the logistic
regression baseline for the classification problem.

For the 421 tasks with less than than 800 positive examples in the training set, the optimal weights
won on 43.2% of the tasks, and the maximum F1 score over all epochs won on 65.6% of the tasks.
With so few positive training examples for these tasks, we expect the RNN to suffer a significant
decrease in performance because RNNs are notoriously dependent on large amounts of training
examples. Despite this, the correlation between tasks likely allowed the RNN to leverage examples
from other tasks to learn more about a given task, resulting in comparable performance from the
RNN.

Additionally, taking the max F1 scores over all epochs resulted in significant performance gains over
using just the weights at any one epoch. This suggests the model sacrificed accuracy for some tasks
in order to gain accuracy for other tasks. With 919 tasks, this may not be too surprising. More nodes
at the hidden layer could alleviate this, but the model would need then more time for training.

We also looked at how the F1 score changes as a function of number of positive training examples.
The result is shown in Figure 4. We see that having more positive training examples increases
performance slightly but not significantly, though some tasks may simply be harder to train on than
others.

5 Conclusion

In this project, we used RNNs to perform character-level prediction on real genomes. After con-
firming that a deep neural network can indeed capture structure within a real genome, we trained a
large model for multitask prediction. We demonstrated that though the RNN takes a while to train,
the resulting model outperformed a logistic regression baseline significantly.
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Figure 4: F1 scores for the logistic regression and RNN models for the 498 tasks with at least 800
positive training examples (out of 80000 total examples). The tasks are sorted in order of number of
positive training examples (tasks more to the right had more positive examples).

The fact that the RNN outperformed the baseline in almost every task with greater than 800 training
examples demonstrated how the RNN can make more effective usage of the information in the
length-100 sequences. Additionally, for this project only a small portion of the entire dataset was
actually used. Due to computational constraints, the RNN described in this project was trained,
developed, and tested using only 90,000 total length-100 sequences. The original dataset from
[7] contains 4,863,024 length-1000 sequences, about 540 times more data. Because the sequences
obtained in the experiments and the human genome are both known, we can increase the lengths of
these sequences even further. We can also break longer sequences into shorter overlapping sequences
to generate more examples. We expect that further training on the entire dataset would lead to
monumental gains in performance. We would also like to first graph the performance of the model
on unseen data as a function of amount of training data to empirically show that more data indeed
helps.

This project demonstrated how an intuitively constructed deep bidirectional RNN with GRUs can
capture sophisticated patterns in short 100-character sequences of the human genome. Several av-
enues for improvement exist, including:

1. Incorporating more data (discussed above). A first step would involve extending the 100-
character sequences to the 200-character sequences from which the authors of [7] generated
the labels.

2. Tweaking hyperparameters, for example adding more layers, increasing the number of hid-
den layers, and testing different activation functions

3. Designing an RNN cell that’s better suited for the very long-rage information associated
with genomic sequences. An example of this is the clockwork RNN [4] architecture.

4. Finding a distributed representation of genomic “words” and initializing a word-based
(rather than character-based) RNN model. Defining a genomic word will also be a chal-
lenge.

Additionally, we would like to find a computationally feasible way to compare our models to those
published by previous authors. Due to time constraints, we could not re-run their models on our
smaller dataset. Direct comparison also would not have been fair; the published models had access
to both significantly more data and computational resources.

While this project is only a first step, ultimately we hope to create a neural network that robustly
models the intricacies of the human genome. Ideally, the model will be able to explain which
subsequences of the genome interact by incorporating how proteins interact with specific sequences.
In practice, such a model will able to predict how an entire organism’s identity can change with small
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changes to a part of the organisms genome. This will allow us to better understand how mutations
(such as single nucleotide polymorphisms) can change phenotypes, allowing scientists to design
more effective treatments for biological imperfections.
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