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Abstract

This paper investigates a neural network model for multi-label classification in the
context of assigning ICD-9 codes to Intensive Care Unit (ICU) patient discharge
summaries. An early procedure for multi-label classification using neural net-
works was BP-MLL which uses a novel pairwise ranking loss function for training
[5], but recent research suggests a more modern architecture that uses a simpler
cross entropy based loss produces better results [3]. The results on the discharge
summary classification task using this approach fail to beat a simple baseline.

1 Introduction

Stringent privacy regulations have contributed to a slow adoption of information technology in the
healthcare industry. However, with support from the federal government, an increasing number of
medical practices are transitioning to electronic health record (EHR) systems for managing patient
data. As more data is brought online, large scale analysis becomes possible.

In the United States, ICD-9 is the official system of assigning codes to diagnoses and procedures
associated with hospital utilization 1. Payers rely on these codes for processing claims, and an entire
profession (medical coding) exists to manually review patient records and assign codes.

ICD-9 codes are organized in a hierarchical structure. Each code is a leaf node in the ICD-9 tree.
For example, “Heat Stroke and Sunstroke” (code 992.0) and “Heat Syncope” (code 992.1) are both
children of the “Effects of heat and light” node in the tree. Figure ?? shows the full sample path for
these codes.

This project considers approaches for assigning ICD-9 codes to Intensive Care Unit (ICU) patient
discharge summaries. Below is an excerpt from the discharge summary of a patient who was as-
signed codes for Cardiac Arrest, Acute Renal Failure, Congestive Heart Failure and a few others:

CHIEF COMPLAINT: Admitted from rehabilitation for hypotension (systolic
blood pressure to the 70s) and decreased urine output.

HISTORY OF PRESENT ILLNESS: The patient is a 76-year-old male who
had been hospitalized at the [**anonymized**] from [**anonymized**] through
[**anonymized**] of 2002 after undergoing a left femoral-AT bypass graft and
was subsequently discharged to a rehabilitation facility.

. . .

As in this example, patients can be (and almost always are) assigned multiple codes. Therefore, I
approach this problem as a multi-label classification task. Throughout this paper, I will use the term
ICD-9 code to refer to the leaves of the ICD-9 tree and ICD-9 node to refer to a node in the ICD-9

1The U.S. healthcare system is in the process of transitioning to ICD-10, an updated and more complex
version of ICD-9. However, this paper will exclusively consider ICD-9.
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Figure 1: Sample Path in the ICD-9 Hierarchy

tree (including the leaves). Additionally, we say that a non-leaf ICD-9 node is assigned to a training
example if and only if at least one of its children is assigned to that training example.

2 Related Work

The particular problem of assigning ICD-9 codes to discharge summaries has previously been stud-
ied with Support Vector Machines [4]. In that paper, the authors consider two different approaches
for predicting the entire ICD-9 hierarchy (i.e. each node in the ICD-9 hierarchy is considered a
class).

The first, called the flat SVM, involves training a binary classifier on each node in the ICD-9 hierar-
chy (excluding the root) independently using all of the data. Then at test time, the final multi-label
prediction is constructed by taking the set of positive predictions from all of these classifiers and
augmenting it with their ancestors in the tree that don’t already belong to the set.

The second approach, called the hierarchy-based SVM, differs from the flat SVM in two ways. First,
during training, the binary SVM for a particular node is trained on only the examples for which
that node’s parent is positive (the root is always considered positive). Second, during testing, the
trained SVM for a node only makes a prediction if the SVM for the parent node predicted positive.
Otherwise that node is predicted negative.

The authors use a bag of words model to represent documents. They first filter out the 10,000 tokens
with the highest tf-idf scores across the training set. Then they represent each document as a 10,000
dimensional vector where the i’th element of that vector is the count of occurrences of token i in the
document.

3 Approach

3.1 Document Representation

There are many ways to represent the patient discharge summaries as input vectors. Previous re-
search provides code for representing these documents as bag-of-words vectors [4]. In particular,
it takes the 10,000 tokens with the largest tf-idf scores from the training set and uses those as the
vocabulary for bag-of-words. I will experiment with using this representation as well as a lower
dimensional SVD representation on the Document-Term matrix.
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3.2 Model

In multi-label classification, the label vector is no longer a one-hot vector. Let Y = {1, 2, 3, . . . }
denote the set of all possible class labels. Then, for the i’th training example xi, the associated label
vector yi is of dimension |Y | and:

y`i =

{
1 class ` assigned to i′th training example
0 class ` not assigned to i′th training example

Previous research suggests the following architecture [3]. The model consists of one hidden layer,
with relu activation on the hidden layer and sigmoid activation on the output layer:

h = relu(xiW + b1)

o = sigmoid(hU + b2)

The dimensions of the input and model parameters are given by

xi ∈ R1×d W ∈ Rd×k b1 ∈ R1×k U ∈ Rk×c b2 ∈ R1×c

where d is the dimension of the input vectors and k is the dimension of the hidden layer.

3.3 Loss

Many different loss functions have been proposed for multi-label classification, including pairwise
ranking loss and cross entropy [5][3]. Pairwise ranking loss was used in early research[5], but recent
research suggests that cross entropy produces better results and is far more computationally efficient
than the original pairwise ranking loss [3]. Therefore, I will use cross entropy loss, which is given
by the following for a single training example:

J(θ;xi,yi) = −
∑
`

y`i log(o`) + (1− y`i ) log(1− o`)

To compute the loss for the training set, I sum this metric over batches of training examples. Finally,
I also include an L2 penalty in my implementation.

3.4 Response

There are over 5,000 ICD-9 codes which makes predicting them directly very challenging. However,
most are very infrequent. To restrict the scope of this project, I will consider two approaches. First,
I will predict only the 20 and 50 most frequent codes in the training set. Second, I will predict nodes
in the second level of the ICD-9 hierarchy.

3.5 Evaluation

I use the rank loss metric to evaluate performance. Rank loss operates on the ordering of the pre-
dicted probabilities. For the i’th training example, it is defined as follows. Let Zi = {` : y`i = 1} be
the set of labels assigned to the i’th training example, and let Z̄i = Y/Zi. Then the rank loss is

|Di|
|Zi||Z̄i|

where Di = {(x, y) : ox < oy, x ∈ Zi, y ∈ Z̄i}.
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4 Experiments

4.1 Data

I will use data from the MIMIC-II clinical database for this project [2]. This database consists
of 22,815 discharge summaries from ICU patients labeled with ICD-9 codes. I split the data into
training, test, and dev sets consisting of 80%, 10%, and 10% of the full data set respectively.

4.2 Input

As mentioned above, I consider two different approaches for input features. The first is a 10,000
dimensional bag-of-words vector where the i’th feature is an indicator of whether token i is present
in the document (d10, 000 input). The second is a 100 dimensional vector resulting from SVD on
the Document-Term matrix from the first representation (d100 input).

4.3 Response

There are 5,030 ICD-9 codes and 7,042 ICD-9 nodes represented in the entire dataset. As mentioned
above, I explore two types of responses in the analysis that follows. First, I predict only the X most
frequent ICD-9 codes in the training set (top X output for X = 20, 50). Second, I attempt to predict
nodes in the second level of the ICD-9 hierarchy of which there are 49 (level two output).

Level Count
0 1
1 3
2 49
3 309
4 1345
5 2821
6 2109
7 405

Table 1: Counts of ICD-9 Nodes by Level in the ICD-9 Tree

Min 1
Max 39
Mean 9.46

Median 9

(a) ICD-9 Codes per Training Example

Min 1
Max 20
Mean 5.43

Median 5

(b) Level 2 ICD-9 Nodes per Training Example

Figure 2: Label Summary Statistics

4.4 Baseline

I evaluate results using the rank loss metric described above. As a baseline, I consider a model that
simply predicts labels in order of their frequency in the training set for all documents.

4.5 Results

Figure 3 shows the result of training the model with d100 input and level two output. The corre-
sponding plots produced by the other input/output combinations all produced very similar patterns.
Table 2 shows the numeric results from all of the models. These results are presented using the best
training parameters found according to validation loss. In particular, for d100 input, 100 hidden
units and .02 L2 penalty were used, while for d10000 input, 500 hidden units and .04 L2 penalty
were used. Learning rate of .01 was used.
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(a) Loss During Training (b) Validation Rank Loss during Training

Figure 3: Training on d100 input and level 2 output

Input Output Validation
Rank
Loss

Validation
Baseline
Rank
Loss

Change Test
Rank
Loss

Test
Baseline
Rank
Loss

Change

d100 level 2 .117 .117 0 .151 .139 +.012
top 20 .302 .331 -.029 .338 .315 +.023
top 50 .293 .317 -.024 .297 .252 +.045

d10000 level 2 .123 .117 +.006 .164 .139 +.025
top 20 .317 .331 -.014 .391 .315 +.086
top 50 .358 .317 +.041 .282 .252 +.030

Table 2: Results Table

5 Conclusion

My model achieves roughly the same performance according to rank loss as one that predicts label
frequencies from the training set. Decreases in validation loss fail to correspond to decreases in
validation rank loss which is inconsistent with previous findings [1]. I think that my model suffered
because of a large number of classes, an extremely uneven label distribution, and the fact that doc-
uments are assigned many different labels. These facts combined with the limited training set mean
that the model has trouble learning features of the rare labels (which make up a majority).

I could restrict the number of output classes further but that would make the task less and less
valuable. Moving forward, I think training on more data would help performance the most. An
updated version of the dataset that I used for this analysis that is double the size is now available
(MIMIC-III [2]). With more data, there are many parts of the model that I could change.

I could experiment with different document representations for input. For example, instead of using
a binary representation in the bag-of-words model, I could fill a document vector with counts of
tokens or tf-idf scores of tokens. An entirely different approach would be to represent documents
as the sum or average of the word vectors of the five or ten tokens in the document with the highest
tf-idf scores. However, because there are a lot of complex medical terms in these documents that
occur very infrequently, training word vectors could be a challenge.

I could also experiment with different model architectures. For example, the discharge summaries
have some structure (e.g. sections for “Chief Complaint”, “History of Present Illness”, and more). I
could represent each of these sections as a vector using one of the approaches described above and
then use these vectors as sequential inputs to a Recurrent Neural Network.

Through this project, I learned a lot about how to formulate a task as a problem that can be tackled
with neural networks. I reviewed literature and explored novel architectures to find a model that
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fit my problem. Despite the poor performance of the final model, I also learned to appreciate the
importance of tuning parameters. I found that carefully tuning parameters led to big improvements in
the final convergence of my validation loss curve during training. While the results of the final model
were disappointing, I gained many practical skills through this project for approaching learning tasks
with neural networks.
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