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Abstract

Text prediction is an application of language models to mobile devices. Currently,
the state of the art models use neural networks. Unfortunately, mobile devices
are constrainted in both computing power and space and are thus unable to run
most (if not all) neural networks. Recently, however, character-level architectures
have appeared that have outperformed previous architectures for machine transla-
tion. They are advantageous in that they do not require a word embedding matrix
and thus require a lot less space. This project evaluates one recent character-level
architecture on the text prediction task. We find that the network performs qual-
itatively well, as well as achieving perplexity levels close to existing methods on
the Brown corpus.

1 Introduction

Text prediction is a forecasting task: guessing the next word in a sequence of text. It is integral to
the user experience of mobile users, as good text prediction can increase typing speed and reduce
errors. The current state of the art models for the task are language models that use neural networks.
Although they perform very well, they often require a lot of memory and computational power–two
things that a mobile device does not have. Because of this, mobile devices currently use simple
frequency statistics (common ngrams) for prediction. The advantage of this method is that it is fast.
The disadvantage is that it cannot take into account the context in which the prediction is being
made, unlike some neural network methods.

Recently, there has been exploration in the natural language processing community on using
character-level architectures instead of word-level ones. These architectures use significantly less
memory, as they do not require a large word embedding matrix. In addition, they are able to utilize
subword information such as morphenes. They have achieved state of the art results for machine
translation.

A natural question is whether character-level architectures can also be used for text prediction. This
paper explores this question. We implement one character-level model that has achieved the afore-
mentioned state of the art results on machine translation, and evaluate it qualitatively and quanti-
tatively on several datasets. Results demonstrate that the character model is able to make useful
predictions in many cases, and also achieves perplexity results close to existing methods on a bench-
mark database.

2 Related Work

Traditionally, text prediction and language models used ngrams [1] [2] [3] [4]. Recently, neural
networks have given state of the art performance. Pérez et al. investigated recurrent neural networks
[5]. Bengio et al. used multilayer perceptrons [6]. Others have tried purely character-level models,
where the input and output are both characters [7]. Character-level only models were found to be
generally outperformed by word-level models [8].
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Most of these aforementioned approaches used word embeddings to turn words of varying sizes
into fixed length vectors. Last year, Kim et al. introduced a character-level model that worked on
characters instead of words, eliminating the need for a large word embedding matrix [9]. Despite
having fewer parameters, their model gave superior performance than previous word-level models
on a variety of tasks, including machine translation [10]. We use their model in this paper for text
prediction.

3 Datasets

Table 1: Example input (I) and output (O) sentences.

I: they didn’t have the needles he needed , and referred him to a sewing store in the mall .
O: they didn’t have the he needed , and referred him to a store in the mall .
I: the librarian at the reference desk directed him to egypt , and there he spent the afternoon .
O: the at the reference desk directed him to egypt , and there he spent the afternoon .
I: mother had a boyfriend from havana , a conga drummer named raul repilado .
O: mother had a from , a named .
I: roy couldn’t wait to tell his mother that he’d made an extra fifty bucks that day .
O: roy couldn’t wait to tell his mother that he’d made an extra fifty bucks that day .

Three datasets were used for evaluation. For the qualitative evaluation, we used subsets of the Corpus
of Contemporary American English (COCA) [11] and the Global Web-Based English (GloWbE)
[12] corpus. These two corpuses were combined, and the resulting corpus contained around five
million tokens and was used to analyze how our model would perform on contemporary English.
For quantitative evaluation, we use the Brown corpus [13], which is often used for benchmarking.
This corpus contained around two million tokens.

3.1 Preprocessing

All tokens were made lowercase. Punctuation marks were treated as unique words. For the COCA
and GloWbE corpuses, we used an output vocabulary of the 5000 most commonly appearing words.
For the Brown corpus, we used 16383 words instead, to make it possible to compare our model
against existing methods. Unknown words were replaced with the “ ” token.

For input to the character-level model, we simply replaced each character with its ordinal represen-
tation from 0-255. There is no word embedding in a character-level model, so we did not replace
any words with the “ ” token.

We refer to the inputs to the network as input sentences, and the target sentences as output sentences.
Example input and output sentences are provided in Table 1.

4 Methodology

From a probabilistic perspective, text prediction is the task of predicting the next word, yt, from
previous history of words yt−1, yt−2.... In other words, the main problem is to find:

argmax
yt

p(yt|yt−1, yt−2, ...)

This is the type of inference task that recurrent neural networks (RNNs) are particularly well suited
for solving. In particular, in this paper, we use a long short-term memory (LSTM), which augments
the traditional vanilla RNN formulation with a cell state. Concretely, at each timestep t, the LSTM
takes xt, ht−1, ct−1 and produces ht, ct via the following calculations:
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it = σ(W ixt + U iht−1 + bi)

ft = σ(W fxt + Ufht−1 + bf )

ot = σ(W oxt + Uoht−1 + bo)

gt = tanh(W gxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

where it, ft, ot are the input, forget, and output gates. This structure allows gradients to flow
additively instead of multiplicatively, hence alleviating problems such as gradient clipping. LSTMs
have been used successfully in a wide variety of machine learning tasks. In our model, we used two
stacked LSTMs with a hidden state size of 512. We applied batch normalization and dropout to the
LSTM outputs, followed by an affine projection to the final output, which was an index within the
target vocabulary.

To generate the inputs to the LSTM, we closely followed the approach taken by [9] and [10] to turn
variable-sized inputs (words) into fixed-size inputs (embeddings). Specifically, we first converted
each character of a word into a character embedding vector of size D = 32. We then convolved
multiple filters of dimensions (W,D) over the resulting embedding vectors, where W ranged from
1 to 6. Max pooling was used to attain a single number from each filter. These numbers were
concatenated to give the final word embedding vector for the input word. Concretely, we used
25 ∗W filters for each W , resulting in a word embedding vector size of dimension:

(1 + 2 + 3 + 4 + 5 + 6)(25) = 525

[9] found that the embedding method described above already gave a high quality language model.
However, they discovered that adding a highway layer after the max pooling, and before the RNN,
improved the model further. The highway layer was introduced by [14]. One layer of the highway
layer does:

z = t� g(WHy + bh) + (1− t)� y

where g is a nonlinearity (we usd RELU) and y = σ(WT y + bT ). We used the same initializations
as [9], setting bT to be small random numbers around -2. RELU was used for the nonlinearity. The
output of the highway layer was passed into the LSTM, as mentioned before.

In summary, our architecture was following (from left to right):

Input Word - Character Embedding - Convolutions - Max Pooling - Highway Layer - LSTM - Projection

Please see [9] for a detailed diagram.

Note: [9] found that a multilayer perceptron (MLP) performed worse than a highway layer, so we
did not attempt to use a MLP in our model. In addition, [9] found that two highway layers did better
better than one on large corpuses, although one layer already gave start of the art results. In this
paper we used one layer to reduce space and computation time.
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5 Training

Figure 1: Perplexities over time on the Brown corpus.

We used a 70/20/10 test/train/val split on both COCA+GloWbE and Brown. Training was done with
batch sizes of 16, and we truncated backpropation at 32 timesteps. The Adam optimizer was used
and initialized with a learning rate of 1e-3. We decayed the rate by a factor of 10, twice, as validation
loss stopped decreasing. Finally, dropout was set to 0.5.

On a NVIDIA GTX 980 Ti, training took a full day. Training and validation perplexities on the
Brown corpus are shown in Figure 1.

6 Results and Discussion

The char-level model gave decent performance both qualitatively and quantitatively. We provide
analyses of both types in the following subsections.

6.1 Qualitative Analysis

Table 2: Sample outputs (correct predictions in red).

“ this discovery is ... important because of the quality of the sample , ” he told reporters .
do not keep your lips stiff and rigid . you have got to keep your lips soft and sensous.
there are three dogs running . two of the dogs are fast . one dog is slow .
why wo n’t you come with me ? my other friend will come with me . he is a very nice man .

The model was able to learn common ngrams, especially bigrams. For example, it learned that the
token “the” followed most words, and that “would have been” was a common phrase. There is some
indication that the model was more powerful than a purely ngram-based model. For example, it
demonstrated limited understanding of tense and plurality through short recall. Some examples are
shown below (correct predictions in red):

• i was hungry and i wanted to eat
• we were hungry and we wanted to eat
• i saw her and she was
• i saw her and we were
• i see her and she is
• i see her and we are

The first two examples demonstrate that the model was able to memorize the subject of the sentence,
and then repeat it later on. The other four examples demonstrate that the model was able to under-
stand the tense of the verb, “see,” and remember this information (the verb was at the beginning of
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the sentence). An ngram model would not have been able to solve this task because of the distance
between the verb and the prediction spot. More predictions are given in Table 2.

6.2 Quantitative Analysis

Table 3: Perplexity comparisons on the Brown corpus.

model train valid test
MLP7 210 309 293
MLP9 175 280 276
MLP10 (w/ trigram) - 265 252
int. trigram 31 352 336
Kneser-Ney back-off - 332 321
class-based back-off - 326 312
ours 147 291 320

Table 4: Embedding layer parameters, 525 dim vectors.

input vocab size params
5000 2625000
10000 5250000
∞ (ours) 19505

We did some quantitative analysis in order to compare our model to existing ones. Specifically, we
evaluated perplexities on the Brown corpus. These measurements are given in Table 3, along with
measurements of other models. The numbers were taken from [6], which also did he same type of
analysis.

Brief examination of the perplexity results shows that our model comes close, but does not beat,
other models in terms of test perplexity. Interestingly, it attains better training perplexity than the
other models, suggesting that improper regularization may have been a culprit. The best model
combines the output of a multilayer perceptron with trigrams, so it is not directly comparable to
ours (we could have done the same thing).

However, it is important to note that our character-level model uses far fewer parameters than any
word-level model, as shown in Table 4. The character-level model has an effective infinite input
vocabulary size, yet uses less than 1/250 of the parameters of a model with input vocabulary of
size 10000. This fact, combined with the perplexity results, suggests that our model may be more
powerful.

One important thing to note is that, although character-level models use less memory than word-
level models, they require more computational time to run because of the convolutions. This is a
space-time tradeoff. [9] found that their model was about half as fast as a word-level model. It
is possible, of course, to store the 525 dimension vectors generated by the convolutions, but this
nullifies the advantages of a character-level model.

7 Conclusion

In this paper we evaluated a character-level language model on the text prediction task. We found
that, although the model used significantly fewer parameters than any neural network with a word
embedding matrix, it was able to give perplexity results on the Brown corpus close to that of other
models. In addition, qualitative analysis showed that the model was able to learn common ngrams,
as well as understand (to limited degree) plurality and tense.

The results suggest that character-level models are powerful and may find use in applications where
memory is limited, such as in mobile devices. In addition, allowing the model to use more parame-
ters (through more convolutional filters, for example) may improve its performance even more.
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