Neural Theorem Prover

Arianna, Yuan
Department of Psychology
Stanford University
Stanford, CA 94305

xfyuan@stanford.edu

Abstract

In the current project, I build a neural network model to prove theorems in logical
forms. Particularly, the model receives a set of axioms (premises) and a theorem
to prove (goal). The model needs to select multiple axioms from the axiom list
that could prove the goal theorem. I reframe it as a sequence to sequence learning
problem, and use double recurrent neural networks to encode the theorem and
output a sequence of axioms. I build three models and showed that the model
which dynamically encodes the axioms perform much better than the model that
does not do so. The current work demonstrates the power of deep neural networks
in automated theorem proving and provide a cognitively plausible computational
model for logical inference.

1 Introduction

In recent years, neural network models have been applied to many artificial intelligent tasks, such
as relation extraction[[1], question answering[2]], text compression[3]], machine translation[4], etc.
Critically, deep neural network with unsupervised learning have successfully solved many tasks that
are traditionally tackled with rule-based approaches, and they demonstrate their advantages over
those previous approaches. However, few studies have applied deep neural networks on automated
theorem proving, which relies heavily on logic and rules. Therefore, I want to fill this gap in the
literature by showing that deep neural networks can perform theorem proving without any explicit
knowledge of logic.

Particularly, I build a neural network model to prove theorems in logical forms. The model receives
a set of axioms (premises) and a theorem to prove (goal). It needs to select multiple axioms from the
axiom list that lead to the goal theorem. To tackle this task, I reframe it as a sequence to sequence
learning problem, i.e., the model takes a sequence of words (goal theorem) as input, and generates a
sequence of axioms that will prove the goal statement. Sequence to sequence learning with recurrent
neural network has gained great popularity in the field of machine translation[4} |5]. However, no
previous research has attempted to use such models to generate proofs.

The current approach has several innovations: 1) Contrary to traditional automated theorem proving
algorithms, the current model does not involve any search. The neural network model learns
to sequentially select axioms by pure feature extraction. Therefore, it is computationally less
expensive. 2) In this paper, I use data in logical forms. However, the model can be easily extended
to daily life language and languages other than English, since it is essentially a language model.
3) The model provides the first end-to-end theorem prover. Specifically, it takes the inputs word
by word, embed them into vector representations and output the likelihood of each axioms to be
selected based on their vector representations. Everything is continuous and can be trained via
back propagation on a large corpus. No hand-crafted knowledge about logical inference are needed
and it easily generalizes to different languages. 4) It involves pattern recognition and attention
mechanisms, which resembles the theorem proving process of humans. Therefore, it offers a

cognitively plausible computational model for human logical inference, which is very important
from the cognitive psychology perspective.

2 Related work

Traditionally, logical inference tasks are performed using logical provers. Given a list of axioms, a
logical prover uses forward-chaining to produce all the logical consequences given the axioms. It
returns once the theorem is produced or refuted [[6]. Logical provers are robust, but even a small
axioms set would make the search space really large, which makes the algorithm very inefficient. In
addition, traditional logical prover requires converting natural language to machine-readable logical
forms, and then applying logical inference rules and search mechanism to find a path to reach the
goal. However, this transformation is itself a non-trivial question. It does not generalize well to
different languages, and requires a lot of hand-crafted rules.

Only recently did researchers began to use neural networks to tackle this task. One of the latest
breakthrough in this field is Samuel Bowman and colleagues’ work on logical semantics, in which
they use recursive neural network to extract the logical relationship between two sentences [7, |8].
Particularly, they extended the previous recursive tree-structured model. Their model takes two
sentences as input, then outputs the logical relationship between the two input sentences, namely,
neutral, entailment or contradiction. The authors implemented two tree-structured models to encode
sentences into fixed-dimension vector representations. The two models are Plain TreeRNNs, which
uses a 2D matrix to combine word embeddings at each tree node, and tree-structured neural
tensor networks (TreeRNTNs), which uses a 3D tensor to combine word embeddings at each tree
node. Both networks consist of multiple composition RN(T)N layers and one comparison RN(T)N
layer. All the composition layers share the same weights. Composition layers transform two input
sentences into two vector embeddings and feed them to the comparison layer. Comparison layer then
takes two sentence embeddings and use a softmax function to classify their logical relationships.
Bowman and colleagues’ work demonstrates the power of neural networks to perform logical
reasoning without explicit knowledge of logic. However, their model cannot be used to select a
sequence of axioms to prove a specific theorem. To my knowledge, this study is the first one using
neural network to solve theorem proving in an end-to-end manner.

Another line of related research is recurrent neural network (RNN) in machine translation. Machine
translation can be viewed as a sequence-to-sequence learning problem and Sutskever et al. propose
a Long Short-Term Memory (LSTM) based RNN to learn machine translation[4]. The RNN takes
sentences with varying lengths as inputs, i.e., word embeddings are sequentially fed into the LSTM
cells until EOS is detected. Then the model returns the translated sentence word by word. LSTM
cells endow the networks with great power to capture long-term dependencies and deal with the
vanishing gradient problem. I use a similar approach in the current project, i.e., instead of outputting
a sentence in another language, the model outputs a sequence of axioms indices. Since the sentences
are not very long in my dataset, I did not use LSTM cells.

Although the data format in the current task is similar to the one in machine translation task, there
is a fundamental difference between the theorem proving task and machine translation task: the
current task requires the model to encode the axiom list to determine which one should be selected.
To incorporate the axiom list into the model, I draw inspiration from the Neural Programmer
developed by Neelakantan, Le and Sutskever [9]. In their original paper, the model performs
a table-comprehension task. Given a quest, it selects relevant numeric inputs and operations
sequentially. For instance, when being asked “What is the sum of the net incomes?”, it first converts
the query sentence and all the column names into vector representations, and then uses these vector
representations to select the column “net income”. Similarly, in my project, the model first converts
the theorem and all the axioms into vector representations, and then use these vector representations
to select the correct axioms successively.

3 Approach

I implement three sequence-to-sequence learning models and run four experiments. The first model
contains two classic sequence-to-sequence RNNs and the axioms are not processed by the neural
network. Therefore, the neural network does not see the sentence embedding of the axioms. It is

termed as Static Double Seq2Seq RNN. The second model learns the sentence embeddings for both
the axiom and the to-be-proved theorem, and uses both of them to predict which axioms to select. It
is termed as the Dynamic Double Seq2Seq RNN. The third one is a control condition for the dynamic
Double Seq2Seq RNN. It matches the number of layers in the dynamic Double Seq2Seq RNN, but
does not include the sentence embedding of the axioms. In the following sections I describe each
model in details.

3.1 Static Double Seq2Seq RNN

In all models, I use two RNNs for sequence-to-sequence learning. The first RNN is used to encode
the texts (goal or axioms), termed as RNNg. The second one is used to predict the axiom sequence,
termed as RNNp. It takes the output of RNNg as inputs. The model structure is illustrated in

Figure[T]

0 40 714

D% S N
EEYEIES

Tt 1

w221 1)
T T (M N T

hyper action , feat

Figure 1: Static Double Seq2Seq RNN

The first recurrent neural network RNNg transforms the to-be-proved theorems into vector
representations. During the training, the word embedding matrix V' € RV the weight matrix
Wys and the bias bg are updated. Note that d is the word embedding size, D, is the sentence
embedding size and |V is the vocabulary size. The last hidden state of RNNg is used as the vector
representation of the sentence. The RNNg is described by the following equations:

z; = tanh(Wg[z;—1; V(w;)] + bs),

1
Wg € RP»*%d po ¢ RP#, 2, € RP» M

zg € RP" is the final representation of a theorem of length S, termed as q.

q is then fed into the second recurrent neural network RNNp. At each time step t, RNNp uses ¢,
and the hidden state at time ¢ — 1 to generate a probability distribution af**°™¢ over all axioms. The
RNNp is described by the following equations:

hy = tanh(Wp(g; h's '] + b1),
aly = softmazx(Ugh's + ba), 2)
Wp € RPr*2Dn e RP» Uy € RO*Pr by € RC

and Wp, by, Uy, by are updated. When training these two neural networks, we apply dropout to their
input layers to avoid feature co-adaptation [10]. The dropout rate is set as 0.9.

3.2 Dynamic Double Seq2Seq RNN

In the Dynamic Double Seq2Seq RNN, RNNg is used to encode not only the goal but also the
axioms. In other words, each axiom is also fed into RNNg to obtain its vector representations
parioms ¢ RPn. These p®®°™* formed a matrix P* € RC*Pr (C denotes the number of axioms
in the axiom list).

In addition, the second recurrent neural network RNN p has an additional layer above the original
hidden layer in Static Double Seq2Seq RNN, in the sense that 2%, is multiplied by P***°™* before
fed into the softmax function. The RNN p is described by the following equations:

b = tanh(Wplg; b '] + by),
oy = softmax (P tanh(U bl + by)), 3)
WP c]RthzDh,bl c RDh,Ul c IRDhXDh, b2 c :[R,Dh, Pawioms c RCth

and Wp, by, Uy, by are updated.

The model structure is illustrated in in Figure2]

174
S EIENEYIEYIEY B

OO

entity , abstraction)

—>m >3

)
L
b 0
I~

(M

wo>|[> > > >>] |]

{ N Y M N |

hyper (action , feat

0
‘)
|
)
eje
/I\
|
)

Figure 2: Dynamic Double Seq2Seq RNN

Note that the axioms and goal theorems are sentences with variable lengths, so I left-pad those
sentences for batch training. After the padding, all the inputs have the same length.

3.3 Control condition of Dynamic Double Seq2Seq RNN

For the control condition of Dynamic Double Seq2Seq RNN, I replace the sentence embeddings of
axioms, P%**°™% with an ordinary weight matrix Us. The RNN p in this model is described by the
following equations:

aly = softmax(Us tanh(Ushls + bg)),

Uy € RP*Pr Uy € RO P @

and Wp, by, Us, Us, by are updated.

4 Experiments

4.1 Dataset

I generate an axiom list from WordNet [[11]]. It includes only three binary predicates, “hypernyms”,
“hyponym” and “meronym”. The axiom list is formatted in first-order logic and it contains two types
of axioms. The first type is Specific Axiom. It contains examples like “hypo(perceiver, somebody) ”,
“hyper(reflex, blink)” and “partOf(windscreen, plane)”. The second type is Core Axiom. It contains
relationships between the predicates. There are only 3 core axioms: “all xy z .((hyper (x,y) &
hyper (y,z)) — hyper (x,z))”, “allxy z .((hypo (x,y) & hypo(y,z)) — hypo (x,z))7,
“allxy z .((partOf (x,y) & hyper (y, z)) — partOf (x, z)) ”. Each axiom in the list is assigned
a number as its index.

Experiment 1-3. There are 8003 axioms in total. I first examine all the axioms to see if any two
of them can prove a new statement. For instance, “all x y z .((hyper (x , y) & hyper(y, z)) —
hyper(x , z))” (index: 0), “hyper(action, accomplishment)” (index: 40) would prove “all z .((hyper
(action, accomplishment) & hyper(accomplishment, z)) — hyper(action , z))”. These newly proved
statements are treated as lemmas. I then examine all the lemmas to see if any one of them paired with
one axiom in the original axiom list leads to a new statement. For instance, in the above example, the
lemma “all z .((hyper (action, accomplishment) & hyper(accomplishment, z)) — hyper(action , z))”
paired with the axiom “hyper(accomplishment, feat)” (index: 176) would prove that “hyper(action,
feat)”. These proved statements become the to-be-proved theorems in my dataset. In other words,
each training example is a [goal (X), proof (y)] pair, where goal statement (X) is given and the proof
(y) is a sequence of axioms the model needs to predict. The example above would be written as
[goal: “hyper(action, feat)”, proof: (“all x y z .((hyper (x , y) & hyper(y, z)) — hyper(x , z))”,
“hyper(action, accomplishment)”, “hyper(accomplishment, feat)”)]. In practice, I use the axiom
indices rather than the sentences to facilitate training. Therefore, a training model can be written as
[X: “hyper(action, feat)”, y: (0, 40, 176)]. Note that in the current dataset, I only consider two-step
proof, i.e., you first select two axioms from the axiom list, get an intermediate result (a lemma), and
then you combine the lemma with a third axiom selected from the list to prove the goal. The model
only needs to predict the three axioms in the correct order, and does not need to generate the lemma.

Using the method mentioned above, I generated 2313 goal-proof pairs in total, including 1850
training examples, 231 validation example and 231 test examples. This dataset are used for
experiment 1-3, which test Static Double Seq2Seq RNN, Dynamic Double Seq2Seq RNN and the
control condition of Dynamic Double Seq2Seq RNN, respectively.

Experiment 4. In experiment 4, I further test the power of Dynamic Double Seq2Seq RNN.
Particularly, I want to know if it generalizes not only to unseen theorem but also unseen axioms.
Therefore, I generate 8000 axioms for each conditions (training, validation and test). Each axiom
list is used to generate its own theorems. In other words, in validation and test dataset, not only the
to-be-proved theorems are new, but also the axioms are not seen in the training phase.

4.2 Evaluation metrics

When the model outputs the axiom sequence, the axioms are treated atomically. In other words, the
model only needs to predict the indices of the axioms. Using the above example, the model needs to
take the sentence “hyper(action, feat)” as its input and output (0, 40, 176). I use cross-entropy
between the model prediction and the target sequence as the loss function and minimize the
cross-entropy error. In Results session, I will show the accuracy of model predictions on training
data and validation data throughout the training.

5 Results

As can be seen in Figure [3] the Static Double Seq2Seq RNN quickly overfits the training dataset,
but the validation accuracy stays at 51% (“No Axioms” panel). The test accuracy is 24%.

However, Dynamic Double Seq2Seq RNN have much better performance than Static Double
Seq2Seq RNN (“Axioms Seen” panel). The validation accuracy are around 77% and the test
accuracy is 72%. This indicates that multiplying the output of RNNp with P®*i°™s dramatically
enhances the network’s ability to prove the theorems.

Replacing the P?*°™s with an ordinary weight matrix does not have the same boosting effect
(“Axioms Seen - control” panel). Its validation accuracy stays at 51% and its test accuracy is 40%.

Finally, when the axioms are not seen (“Axioms Unseen” panel), the validation accuracies are much
lower (6%). However, given that the axiom list contains 8003 axioms, it is still above chance. In
addition, when we look at the accuracies for individual axioms, rather than the axiom sequence as a
whole, the test accuracy is 33%, meaning that a third of the times it selects the right axioms.

No Axioms Axioms Seen

1.00-
0.75-
0.50-
>\0.25-

8]
©0.00- : : dataset
> Axioms Seen — control Axioms Unseen | traﬁugI
8 1.00+ —vali

0.75-
0.50-
0.25-

PN

oo0if ST
0 500 1000 1500 2000 0 500 1000 1500 2000

Epoch

Figure 3: Accuracy on training set and validation set.

5.1 Error Analysis

To understand the lower accuracy in Experiment 4 (“Axioms Unseen” panel), I did an error analysis.
It shows that the model often picks up the first axioms correctly, i.e., the core axioms, but fails to
pick up the correct ones for the second and the third. This is due to the fact that both the axioms and

theorems are unseen in the test phase, which contains many unknown words. The model does not
have any meaningful embeddings for those Specific Axioms, thus it can not select the correct ones.

6 Conclusions

In the current project, I build a neural theorem prover and show that deep neural networks can
generate proofs for given theorems, which is traditionally solved using symbolic and rule-based
approaches. Particularly, I demonstrate that a neural network which dynamically encodes the content
of the axioms performs better than the neural network which does not do so. This improvement can
not be attributed to more layers or more parameters. The current study provides a novel approach to
performing automated theorem proving with neural networks.

For future directions, it would be interesting to see how the input lengths and the proof lengths
influence accuracy. I expect that increasing proof lengths and input lengths would result in lower
performance, though the degree of performance drop might be different.

In addition, it is worth probing how the choice of recurrent neural network cells influences
performance. It is likely that long-short-term memory (LSTM) neural network would perform better
than basic recurrent neural network [[12]].

References

[1] T. Barnickel, J. Weston, R. Collobert, H.-W. Mewes, and V. Stiimpflen, “Large scale
application of neural network based semantic role labeling for automated relation extraction
from biomedical texts,” PLoS One, vol. 4, no. 7, p. 6393, 2009.

[2] A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce, P. Ondruska, I. Gulrajani, and
R. Socher, “Ask me anything: Dynamic memory networks for natural language processing,”
arXiv preprint arXiv:1506.07285, 2015.

[3] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, 2013.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
in Advances in neural information processing systems, pp. 3104-3112, 2014.

[5] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with recurrent neural networks,”
in Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pp- 1017-1024, 2011.

[6] S. Russell, P. Norvig, and A. Intelligence, “A modern approach,” Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs, vol. 25, p. 27, 1995.

[7] S.R.Bowman, “Can recursive neural tensor networks learn logical reasoning?,” arXiv preprint
arXiv:1312.6192, 2013.

[8] S. R. Bowman, C. Potts, and C. D. Manning, “Recursive neural networks for learning logical
semantics,” CoRR, abs/1406.1827,2014.

[9] A. Neelakantan, Q. V. Le, and I. Sutskever, “Neural programmer: Inducing latent programs
with gradient descent,” arXiv preprint arXiv:1511.04834, 2015.

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

[11] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM, vol. 38,
no. 11, pp. 39-41, 1995.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735-1780, 1997.

	Introduction
	Related work
	Approach
	Static Double Seq2Seq RNN
	Dynamic Double Seq2Seq RNN
	Control condition of Dynamic Double Seq2Seq RNN

	Experiments
	Dataset
	Evaluation metrics

	Results
	Error Analysis

	Conclusions

