
LSTMs and Dynamic Memory Networks for
Human-Written Simple Question Answering

Zack Swafford
Department of Computer Science

Stanford University
Stanford, CA 94305

zswaff@stanford.edu

Alex Barron
Department of Computer Science

Stanford University
Stanford, CA 94305

admb@stanford.edu

Abstract

One of the larger goals of Artificial Intelligence research is to produce methods
that improve natural language processing and understanding and increase the abil-
ity of agents to interact and converse with humans. This by its very nature is an
incredibly complex task, and involves myriad subproblems. Many of these prob-
lems have been posed and solved successfully, but one of the most interesting
problems which is an active area of research currently is developing agents with
the ability to answer questions by chaining facts, using inductive or deductive
reasoning, parsing the question and looking up the answer, etc. We argue that
improving performance on tasks which measure an agents ability to answer ques-
tions is an excellent benchmark for further, more general AI improvement. Our
problem is therefore built around these tasks. We use modern deep learning tech-
niques to demonstrate increased performance on a variety of canonical question
answering tasks.
Practically speaking, the Question Answering problem is critical in a very direct
way to projects like IBM’s Watson[9], which was initially designed to answer
trivia questions and is now being applied in the medical field. But it is also impor-
tant to almost any project or business that requires any type of query, like search
engines, chat applications, database programs, etc. Natural language queries are
much more common, and much easier for humans to formulate, than other kinds
of queries which can more directly access facts such as those written in database
languages. It is thus one of the most important problems in the Artificial Intelli-
gence fields to develop models and methods to parse these questions and correctly
answer them.

1 Introduction

Our specific problem of choice involves answering human-written factual questions, such as ‘Who
was Tad Lincoln?’. The model ingests a large database of questions and their answers, as well
as a much larger list of other unrelated commonly known facts, and uses modern neural network
techniques to train and increase its ability to answer the questions. When the model is finished
learning, a completely new, unseen question can be asked and a factual answer will be found if the
answer exists in the huge database of facts. In our case, the model will respond that ‘Tad Lincoln is
the son of Abraham Lincoln.’

This problem has been posed in a variety of different contexts. We are working in line with the
formulation proposed by Facebook in conjunction with the SimpleQuestions dataset [2]. The ques-
tion answering problem in this context is set up such that, given a database of facts and separately a
database of questions labeled with their fact answers in the fact database, the problem is to develop a
model that can answer unseen questions with their particular facts in the fact database. The problem

1

obviously cannot learn new facts, so it can only answer any question with a fact from the database,
but with a large database of facts many questions can be answered.

A much simpler version of our problem is that posed in what is commonly referred to as the Face-
book bAbi dataset1 but is more specifically the Dialog-based Language Learning dataset within the
bAbi project. In short, this dataset has algorithmically generated statements of fact, followed by a
question about the facts. Each question has a very simple answer. This problem is much easier to
work with that the SimpleQuestions one for a variety of reasons. Firstly, all of the facts and questions
are machine-generated instead of human-generated, and are correspondingly easier for a model to
parse and understand. Further, the set of possible answers is comparatively very small and simple.
Where in the larger SimpleQuestions problem an answer could be any of millions of facts, potential
responses in the Dialog-based Language Learning problem are usually limited to well under ten.

We opted to solve both the Dialog-based Language Learning and SimpleQuestions problems, de-
veloping some techniques and models (such as Dynamic Memory Networks) on the simpler dataset
then adapting and improving our methods for the larger one. Although they are fundamentally
different problems and exist in different contexts, the simpler bAbi problems are in some ways a
specified case of the more general fact-based question answering–the basic questions are based on a
few facts and, asked a question about them, must respond appropriately; the more complex problem
involves millions of facts and the model must similarly generate the correct answer based on those
facts. Therefore, many of the same approaches were applicable in developing both models.

To build a model that can successfully answer questions from the human-generated SimpleQuestions
dataset, we initially employed a simple Recurrent Neural Network to convert GloVe-modeled words
into a representation in the fact space. We later implemented deep, bidirectional Long Short-Term
Memory cells (LSTMs) to replace the much simpler cells that the RNN initially employed. In order
to further improve our results, we finally turned to Dynamic Memory Networks.

In order to successfully implement a DMN, we first wanted to establish a baseline on the simpler
Dialog-based Language Learning dataset. This proved very profitable (we saw the predicted in-
crease in performance on this dataset). We then returned to the SimpleQuestions problems and
implemented a similar DMN there. We were unable to achieve analogous improvements from the
DMNs in the context of this problem; we explore the fundamental reason why in the Results section.

2 Background

The research done by Facebook and released in conjunction with the SimpleQuestions datasets,
[1], provided the initial inspiration for our project. Since it is a very new dataset, we had only the
original paper’s results for reference. Their approach uses a memory network to store a subset of
the Freebase fact database and produce answers to factual questions based on the networks memory
and inputs. They use a candidate generation technique rooted in more traditional NLP techniques to
make the problem tractable for deep learning.

Recently a new kind of memory network known as Dynamic Memory Network [5] has appeared,
and is relevant to our research here. This approach features multiple episodic passes over the relevant
database in each run of the algorithm, together with an attention weighting function applied between
each pass and has demonstrated state of the art performance on artificial datasets such as the Dialog-
Based Language Learning dataset also introduced by Facebook [2]. It seemed natural, therefore, to
see if the excellent DMN results on this dataset were transferable to the more authentic and difficult
human-generated SimpleQuestions dataset.

3 Datasets

The tasks presented by each of the datasets are quite distinct, and so we present a toy example from
each here.

1https://research.facebook.com/research/babi/

2

A SimpleQuestions training example is a human-written question paired with a Freebase triple rep-
resenting the fact of the form (subject, relation, object). For example:

What is the position that Mike Twellman plays?
=⇒ (Mike Twellmen, football player/position, Defender)

A Dialog-Based Language Learning example consists of a “story”, containing facts in the form of
sentences, a one word answer, and additional annotation for the particular fact sentences that were
relevant to the finding the answer.

1 John travelled to the hallway.
2 Mary journeyed to the bathroom.

Where is John? answer = hallway
relevant facts = 1

4 Technical Approach

4.1 Models

In both the SimpleQuestions and the Dialog-Based Language Learning setting, we required a deep
learning model to take as input the question and fact vector representations and output a prediction
for the answer. We explored two major categories of models for this task. We will first outline their
mathematical components and explore how they fit into the two separate tasks.

4.1.1 Deep Bidirectional LSTM

Only on the SimpleQuestions task, we implemented a deep bidirectional LSTM to produce an output
vector from the algorithm.

Its typical update rules for a time step t are given below.

Figure 1: An LSTM Cell

it = σ
(
W (i)xt + U (i)ht−1 + b(i)

)
ft = σ

(
W (f)xt + U (f)ht−1 + b(f)

)
ot = σ

(
W (o)xt + U (o)ht−1 + b(o)

)
c̃t = tanh

(
W (c)xt + U (c)ht−1 + b(c)

)
ct = ft ◦ ct−1 + it ◦ c̃t.

4.1.2 Dynamic Memory Neural Network

On both tasks, we implemented a dynamic memory network. Instead of simply producing an output
from a sequence of input vectors, the DMN uses an episodic memory module to pick out relevant
facts from the database. The DMN consists of four modules: Input, Question, Episodic Memory
and Answer.

3

Figure 2: General DMN Structure

4.2 Input Module

The input module parses facts from the relevant data and creates their fact representation.

For the Dialog-Based Language Learning tasks, we follow [5] and consider each sentence in an
input ”story” as a fact. We then run a GRU over the GloVe vector representations of each of the
input words, extracting outputs at the end of each of the input sentences. We use the period character
‘.’ as our end of sentence token because that is the way the dataset is structured. For each training
example, then, we are able to create a list of facts in their vector representations.

For the SimpleQuestions dataset, the large size of the fact database meant running a GRU over the
entire set was completely unfeasible. This necessitated a different method of creating fact represen-
tations. We treated each of the words in Freebase entities and each of the Freebase relations as a
word in a vocabulary and ran the GloVe code [6], to create distributed representations for each of the
“words” in the fact database. Then we could generate a fact vector for each of the 9 million facts by
taking the mean of the GloVe vectors for the words in that fact. This allowed us to create a vector for
every fact in the Freebase subset. From there we still needed to refine the 9 million into a number
of facts that we can realistic perform GRU updates on. To do this we use the candidate generation
algorithm described in detail in the answer module.

4.3 Question Module

The question module parses the question into its vector representation.

In both cases we used a GRU over the pre-trained GloVe word vectors for each of the words in the
question. Unlike in the input module we can just take the final state of the GRU as the question
vector, since there is only one.

4.4 Episodic Memory Module

The episodic memory module generates episodes and feeds them into an outer GRU to produce an
overall memory vector output for the system to be fed into the answer module.

In both cases the module is similar. The outer structure is a conventional GRU. We call the inputs
to this GRU “episodes” ei and the outputs of the GRU “memories” mi. With these definitions we
define the GRU update step as

mi = GRU(ei, mi−1).

Each episode is dependent upon the facts from the input module c, the previous output of the outer
GRU mi−1, and the question vector from the question module q. We define the below feature vector
to capture various similarities between these vectors. We follow [4] in implementing a slightly
simpler feature vector than the original paper [5]:

z(c, mi−1, q) =
[
c, mi−1, q, c ◦ q, c ◦mi−1, |c− q|, |c−m|

]
.

4

Now we can define the attention function in terms of z. We choose a simple 2-layer feedforward
neural network.

G(c,mi−1, q) = σ
(
W (2) tanh

(
W (1)z(c, mi−1, q) + b(1)

)
+ b(2)

)
.

Intuitively, this function allows the algorithm to choose different input facts to focus on by giving
them a high attention.

On each episode generation we want the algorithm to focus on one fact (since we have multiple outer
GRU steps). This is a reasonable step because answers to the Dialog-Based Language Learning
problems typically only require 1-3 of the fact sentences from the original input; and answers in the
SimpleQuestions dataset only need to single out one fact from the candidates for the answer.

Since we only have the one output, it is reasonable to use a softmax to generate the final episode
from the input facts and the attention function. Let there be T input facts, and let ct be a particular
one. Further, git is the output of the attention function for fact t on outer iteration i. Then we have

ei =

T∑
t=1

ct · softmax(git).

At each step of the outer GRU, we generate a new episode by the equation above. The result and the
previous memory are fed into its next state.

The output of the module is then the final state (the final memory) of the outer GRU. Assuming there
are a hyperparameter M outer GRU steps, we denote this final result mM .

4.5 Answer Module

The answer module takes the final memory from the episodic memory module and uses it to output
the answer to the original question.

In the Dialog-Based Language Learning setting, our output is just one word and the vocabulary of
output words is small. This means we can simply project the final memory into the vocabulary size
space and use a softmax classification to pick the most likely answer word.

The problem is much harder in the SimpleQuestions case. Since we have what is essentially a 9
million-way classification problem between all the possible output facts, a simple softmax output
layer will never be feasible on the dataset. Thus, following [1], we take a different approach.

Since we have vector representations of each of the possible output facts, we train the algorithm to
make the fact label vector as similar as possible to the final memory of the episodic memory module.
To allow easy comparisons of vectors with very different norms, we use the cosine similarity to
measure this. If q and f are the question and fact vectors, respectively, and θ is the angle between
them, we have:

CosineSimilarity(q, f) = cos(θ)

=
q · f
||q|| ||f ||

.

However, we run into the same problem we had with softmax–we still have to compare our out-
put to all 9 million facts. This necessitates the creation of a candidate generation step to answer
SimpleQuestion problems.

4.6 Candidate Generation

We produce a small set of candidate facts for each question, as suggested by Bordes et al. [1].
We determine relevance with a unigram comparison–if any word in the fact matches any word in
the question, ignoring stopwords and other words that are very common, the fact is potentially
relevant. This is unlikely to remove any correct answers because correct answers will share words
with the question. We also throw out any words which match over 1000 candidate facts, as then the
classification would again become too large. With this optimization the prediction step is tractable.

5

Once the list of candidate facts are determined for a given question, the RNN output for that question
is compared via cosine similarity to the fact vectors of the various potential answers. Whichever fact
vector is most cosine similar is returned as the output of the model.

4.7 Training

On the Dialog-Based Language Learning dataset, we train in a strongly supervised setting in line
with [5]. This is possible because the dataset contains both the answers to each question and anno-
tations indicating facts in the stories are relevant to the answer. We therefore train the following loss
function

lossDBLL = αECE(Gates) + βECE(Answers).

Here ECE(Gates) is a sigmoid cross-entropy function between the outputs of the attention function
and the labelled relevant sentences (the sigmoid is necessary because there may be more than one);
ECE(Answers) is a softmax cross-entropy function between the output of the answer module and
the answer labels. As suggested by [5], we train first with α = 1, β = 0 and then once the attention
function is trained we set α = 1, β = 1.

On the SimpleQuestions data, we train in a more weakly supervised manner where the loss function
for an output o and label fact vector f is

lossSQ = 1− CosineSimilarity(o, f).

5 Results

We initially ran experiments on the SimpleQuestions dataset. Our baseline implementation was a
simple RNN outputting the vector to be compared to the labeled fact vector. Reaching this stage
alone proved to be very challenging due in part to the massive files involved. The Freebase database
also became defunct halfway through our project, and thus we had to rely on third-party sources
for natural language aliases to the freebase entities. This meant that formatting and parsing the data
with the appropriate natural language processing so that the candidate generation step was possible,
which was not intended to be a difficult part of this process, was one of the largest challenges of the
project.

Ultimately, we implemented the candidate generation module by partially simulating its action. This
was necessary because state of the art candidate generation on the Freebase fact subset is extremely
difficult now because Freebase is defunct. Further, this module was not the focus of our research–
state of the art candidate generation involves complex natural language processing, semantic anal-
ysis, and language graphs, but does not usually involve deep learning at all. Bordes et al. [1] set
the bar for candidate generation with an average viable candidate list length of 20. This was vastly
better than any model we attempted because ours were full of useless Freebase information. The rest
of our results on the SimpleQuestions dataset assume a slightly more conservative (i.e. candidate
lists of 100) version of Bordes’ candidate generation function.

Once we had set up the system, we first experimented with more complex RNN models, implement-
ing LSTM cells and then later their deep, bidirectional variants. From there we implemented the
DMN on the data set. While initially we saw a slight improvement with the DMN, further tuning of
the LSTM hyperparameters revealed that the added sophistication of the DMN did not improve test
results.

Training the DMN and the deeper LSTMs was challenging, but we experimented with capping
gradients and introducing gradient noise as suggested by [11] and were able to better our results.

We also implemented the DMN for the Dialog-Based Language to sanity check our code on a more
easily testable dataset. We were able to achieve near state of the art (98%) test accuracy on the first
task. However as this was not the main focus of our project we did not fully tune hyperparameters
and train on the other tasks.

6

Table 1: SimpleQuestions Percentage Accuracy with 100 Simulated Candidates
RNN LSTM Deep bi. LSTM DMN

train 52 63 64 55
valid 51 59 60 54

test 48 57 58 52

The DMN’s reduced test accuracy when compared to the LSTM models is a result of a numbers
of factors. First is that we may not have a reached a good local optimum in training due to the
complexity of the model. In theory, purely the input model of the DMN (which is a GRU), is
similarly powerful to the LSTM cell model which suggests that there should be some combination
of the weights for the DMN which would produce comparable results to the LSTM. Therefore
the second reason is more likely the culprit–namely, that the candidate generation algorithm does
not provide a consistent candidate structure between examples. Thus it is difficult for the DMN to
effectively generalize to new examples. Since the SimpleQuestions dataset is weakly supervised, it is
also difficult for the DMN’s attention function to pick out the correct fact–it is essentially just directly
trying to solve the overall problem. If we had access to supporting fact data for SimpleQuestions, it
would be far easier to effectively train the DMN through the attention function.

6 Conclusion

This problem provided an excellent tour of state of the art RNN and memory network techniques.
Applying bidirectional LSTMs and now cutting-edge DMNs to these problems provided a lot of
insight into the current state of the field, and suggested a vast multitude of directions for further
research and experimentation.

It was particularly exciting to implement the dynamic memory networks in the SimpleQuestions
application because as far as we know this has never been attempted. While adapting it effectively
did prove difficult, it nonetheless demonstrated some interesting properties of DMNs. We learned
about the practical efficacy of such a solution in the context of an answer set of variable length
and ordering–because the candidate sets were different between training and validation, the DMN
could not be applied as aptly without adaptation. Perhaps with better, more consistently structured
candidates, the DMN could perform much better on the task. Regardless, experimenting with such
cutting-edge techniques feels very exciting and is more likely to advance the state of the art.

We believe that we have replicated state of the art techniques on the SimpleQuestions dataset. With-
out an exact candidate generation module we cannot be sure, but our simulation of Borge’s model
was conservative and we achieved similar or better results. This suggests an excellent avenue of fur-
ther research–with Borge’s model, or a similarly excellent candidate generation algorithm, we may
see a serious improvement using our techniques. Unfortunately these models are unavailable, and
may well permanently remain so now that Freebase is inaccessible. With a reconstructed database,
an annotated dataset, or a preexisting candidate generation model, we could test our other modules
against the state of the art solution.

References

[1] Bordes, Antoine, et al. ”Large-scale simple question answering with memory networks.” arXiv
preprint arXiv:1506.02075 (2015).

[2] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merrinboer, Ar-
mand Joulin and Tomas Mikolov. Towards AI Complete Question Answering: A Set of Pre-
requisite Toy Tasks. arXiv:1502.05698.

[3] Weston, Jason, Sumit Chopra, and Antoine Bordes. ”Memory networks.” arXiv preprint
arXiv:1410.3916 (2014).

[4] Xiong, Caiming, Stephen Merity, and Richard Socher. ”Dynamic memory networks for visual
and textual question answering.” arXiv preprint arXiv:1603.01417 (2016).

[5] Kumar, Ankit, et al. ”Ask me anything: Dynamic memory networks for natural language pro-
cessing.” arXiv preprint arXiv:1506.07285 (2015).

7

[6] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vec-
tors for Word Representation

[7] Wang, Zhenghao, et al. An overview of Microsoft deep QA system on Stanford WebQuestions
benchmark. Technical report, Microsoft Research, 2014.

[8] Su, Vincent. ”Solving the Prerequisites: Improving Question Answering on the bAbI Dataset.”
[9] Murdock, J. William. ”Decision Making in IBM Watson Question Answering.” (2015).

[10] Van Der Velde, Frank. ”Concepts and Relations in Neurally Inspired In Situ Concept-Based
Computing.” Frontiers in Neurorobotics 10 (2016).

[11] Neelakantan, Arvind, et al. ”Adding Gradient Noise Improves Learning for Very Deep Net-
works.” arXiv preprint arXiv:1511.06807 (2015).

[12] https://github.com/YerevaNN/Dynamic-memory-networks-in-Theano - referenced for our
Tensorflow DMN implementation.

8

