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Overview

Videoissues and fire alarm
Finish LSTMs

Recursive Neural Networks

. Motivation: Compositionality

. Structure prediction: Parsing

. Backpropagation through Structure

. Vision Example

Next Lecture:

*  RvNN improvements
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Long-short-term-memories (LSTMs)

 We can make the units even more complex

* Allow each time step to modify

* Inputgate (current cell matters) =0 (W(i)xt + U(i)ht—l)

* Forget (gate O, forget past) ft=0 (W(f)xt + U(f)ht—l)

+  Output (how much cell is exposed) ot = o (W(O)xt + U(O)ht—l)

* New memory cell ¢t = tanh (W(C)l’t + U(C)ht—l)
* Final memory cell: ¢t = froci—1 41t 0 G
* Final hidden state: hi = o, o tanh(c;)
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lllustrations all a bit overwhelming ;)

forget =
f(netforgef)

1/14/20 17

http://people.idsia.ch/~juergen/Istm/sld017.htm

net. S, =S.+9 yn Yo
- | 9 gy" (10 h ou, e
= OO0

@ net you{l @ net,
YA

Long Short-Term Memory by Hochreiter and Schmidhuber (1997)

forget gate
‘ self-recurrent

" connection
memory cell Vl—*—jﬁ » memory cell
input I output

Input gate output gate

http://deeplearning.net/tutorial/lstm.html

Intuition: memory cells can keep information intact, unless inputs makes them

forget it or overwrite it with new input.

Cell can decide to output this information or just store it
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LSTMs are currently very hip!

* En vogue default model for most sequence labeling
tasks

* Very powerful, especially when stacked and made

even deeper (each hidden layer is already computed
by a deep internal network)

 Most useful if you have lots and lots of data
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Deep LSTMs compared to traditional systems 2015

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’ 14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
Best WMT"’ 14 result [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ~45

Sequence to Sequence Learning by Sutskever et al. 2014



Deep LSTMs (with a lot more tweaks) today

WMT 2016 competition results from yesterday

Scored Systems

System Submitter System Notes Constraint Run Notes BLEU

BPE neural MT system
with monolingual

SRl training data (back-
uedin-nmt-ensemble (Details) University of translagted) ensemble of | Y€S 34.8
Edinburgh "

4, reranked with right-
to-left model.

Neural MT system based
on Luong 2015 and
Sennrich 2015, using
Morfessor for subword
splitting, with
back-translated

monolingual pES 32.8
augmentation.
Ensemble of 3
checkpoints from one
run plus 1 Y-LSTM (see
entry).

BPE neural MT system
rsennrich with monolingual
uedin-nmt-single (Details) University of training data (back- yes 32.2
Edinburgh translated). single
model. (contrastive)

metamind-ensemble (Details)

Phrase-based MT with 29.7

KIT {Detalls) NMT in rescoring yes

Matthias Huck
uedin-pbt-wmt16-en-de (Details) University of Phrase-based Moses yes 29.1
Edinburgh

Phrase-based model,

word clusters for all

model components (LM,
Moses Phrase-Based (Details) OSM, LR, sparse yes [26-7] 29.0

features), neural

network joint model,
7 large cc LM

. . Matthias Huck Phrase-based Moses
uj;gg:-'lzb) t-wmtl6-en-de-contrastive University of (contrastive, 2015 yes 29.0
Edinburgh system)




Deep LSTM for Machine Translation

PCA of vectors from last time step hidden layer

| OJohn admires Mary

OMary admires John

OMary is in love with John

OMary respects John

OdJohn is in love with Mary

OdJohn respects Mary

10

-15f

-20

O I'was given a card by her in the garden

O In the garden , she gave me a card
O She gave me a card in the garden

O She was given a card by me in the garden
In the garden , | gave her a card

O | gave her a card in the garden

1 1 1 1 1 1 J

-15

-10 -5 0 5 10 15 20

Sequence to Sequence Learning by Sutskever et al. 2014
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Further Improvements: More Gates!

Gated Feedback Recurrent Neural Networks, Chung et al. 2015

(a) Conventional stacked RNN (b) Gated Feedback RNN

9 Richard Socher 4/29/16



Summary

* Recurrent Neural Networks are powerful
* A lot of ongoing work right now

* Gated Recurrent Units even better
 LSTMs maybe even better (jury still out)

* This was an advanced lecture = gain intuition,
encourage exploration

 Next up: Recursive Neural Networks
simpler and also powerful :)
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Building on Word Vector Space Models

g

2 4
2 4

K Germany

¢

g b

France [2

¥ Monday [ g ]

2.

K Tuesday (4.
1.5

the country of my birth
the place where | was born

But how can we representthe meaningof longer phrases?

11

By mappingthem into the same vector space!



Semantic Vector Spaces

Vectors representing

Phrases and Sentences

that do notignore word order

and capture semantics for NLP tasks

l—l—\

<€ >
Single Word Vectors Documents Vectors
e Distributional Techniques * Bag of words models
e Brown Clusters  PCA (LSA, LDA)
e Useful as features inside e GreatforlIR, document
models, e.g. CRFs for NER, etc. exploration, etc.
e Cannotcapture longer phrases * lgnorewordorder, no

detailed understanding



How should we map phrases into a vector space?

Use principle of compositionality

The meaning (vector) of a sentence
is determined by 5
(1) the meanings of its words and

x the country of my birth
x the place where | was born

(2) the rules that combine them. Germany
xFrance

xMonday

xTuesday

—— et —t— ey

1 2 3 4 5 6 7 8 9 10 X,

Modelsin this section
can jointlylearn parse
trees and compositional
vector representations

4 2.1
3.3

country of my birth 13



Sentence Parsing: What we want

G0 ) ) [

14 The cat sat the mat.



Learn Structure and Representation




Learn Structure and Representation?

e Do we really need to learn this structure?
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Sidenote: Recursive vs recurrent neural networks

my birth
1 1 5.5 4.5 2.5
3.5 > s >6.1 3[3.8 P38
0.4 2.1 7 4 2.3
0.3 3.3 7 4.5 3.6
the country  of my birth
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Sidenote: Are languages recursive?

e Cognitivelydebatable
e But: recursion helpful in describing natural language

e Example: “the church which has nice windows”, a noun phrase
containing a relative clause that contains a noun phrases

e Arguments for now: 1) Helpful in disambiguation:

S S
/\ NP VP
NP VP |
| PRP
PRP | VBZ NP
| He | /\
He  vpz NP PP eals NP Bp
| | PN P
eats NTS IN NP N K N
. - | | |
spaghetti gy DT NN spzng|helti with NN

a Spoon meat
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Is recursion useful?

2) Helpful for some tasks to refer to specific phrases:

* John and Jane went to a big festival. They enjoyed the trip
and the music there.

* “they”:John and Jane
* “the trip”: went to a big festival
* “there”: big festival
3) Labelingless clear if specific to only subphrases

* | liked the bright screen but not the buggy slow keyboard of
the phone. It was a pain to type with. It was nice to look at.

4) Works better for some tasks to use grammatical tree structure

e Thisisstill up for debate.
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Recursive Neural Networks for Structure Prediction

Inputs: two candidate children’srepresentations
Outputs:
1. The semantic representation if the two nodes are merged.

2. Score of how plausible the new node would be.
=) ]

3 3
Neural [i ]
Network

(2t
"N

g]

mat




Recursive Neural Network Definition

score = U'p

Neural

Network = | p= tanh(W[?]+ b),
2

Same W parameters at all nodes
of the tree
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Parsing a sentence with an RNN

e O o G [i] : [i]

Neural Neural Neural Neural Neural
Network Network Network Network Network
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Parsing a sentence

Neural
Network

23

Neural
Network

Neural
Network




Parsing a sentence




Parsing a sentence
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Max-Margin Framework - Details

e The score of a tree is computed by
the sum of the parsing decision
scores at each node:

s(ty)= > sn

nenodes(y)

26




Max-Margin Framework - Details

e Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

J = Zs(xi,y,-) — max (S(xia)’) _'_A()’a)’i))
i )’GA(XI')

* Theloss A(y,y;) penalizesall incorrect decisions

e Structure search for A(x) was maximally greedy
* |Instead: Beam Search with Chart

27



Backpropagation Through Structure

Introduced by Goller & Kichler (1996)

Principally the same as general backpropagation

0
oW )

s — ((W(l))T5(l+1)) o f'(z1), Er = U (aT 4 xiww®

Three differences resulting from the recursion and tree structure:
1. Sum derivatives of W from all nodes
2. Splitderivatives at each node
3. Add error messages from parent + node itself

28




BTS: 1) Sum derivatives of all nodes

You can actually assume it’s a different W at each node
Intuition via example:

0
Wf(W(f(Wx'»
0

= o) (W) £0va) + Wi v )
= W (W) (F(We) + W (Wa)a)

If we take separate derivatives of each occurrence, we get same:

0

8W2 fWa(f(Wix)) + Wf(WQ(f<Wlx))
f'(w
f'(w
(W

2o(f(Whz)) (f(Whz)) + f/(Wal(f(Wiz)) (W f (Wix))
2o(f(Whz)) (f(Whiz) + Wa f' (Wyix)z)

= PW((Wa) (f(We) + W f (Wa)z)

29



BTS: 2) Split derivatives at each node

During forward prop, the parent is computed using 2 children
8
1
; 3 p = tanh(W[21]+ b)
[5] G [3 ] C, ’

Hence, the errors need to be computed wrt each of them:

)

e AN where each child’s error is n-dimensional
3
G 5p—>0102 — [5P—>Cl 5P—>02]

30



BTS: 3) Add error messages

e At each node:
* What came up (fprop) must come down (bprop)

* Total error messages + = error messages from parent + error
message from own score

parent
”

sgore
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BTS Python Code: forwardProp

def forwardProp(self,node):
# Recursion

# This node's hidden activation

node.h = np.dot(self.W,np.hstack([node.left.h, node.right.h])) + self.b
# Relu

node.h[node.h<0] = 0

# Softmax
node.probs = np.dot(self.Ws,node.h) + self.bs
node.probs -= np.max(node.probs)

node.probs = np.exp(node.probs)
node.probs = node.probs/np.sum(node.probs)
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BTS Python Code: backProp

def backProp(self,node,error=None):
# Softmax grad
deltas = node.probs

deltas[node.label] -= 1.0
self.dWs += np.outer(deltas,node.h)

self.dbs += deltas 5(1) — ((W(l))Té‘(H‘l)) o f,<Z(l)),

deltas = np.dot(self.Ws.T,deltas)

# Add deltas from above
if error is not None: é) (l ) (l) . (l)
deltas += error Er =19§ +1 a + PN VY4
oW (@®)

# £'(z) now:

deltas *= (node.h != 0)

# Update word vectors if leaf node:
if node.isLeaf:
self.dL[node.word] += deltas
return

# Recursively backprop

if not node.isLeaf:
self.dW += np.outer(deltas,np.hstack([node.left.h, node.right.h]))
self.db += deltas
# Error signal to children
deltas = np.dot(self.W.T, deltas)
self.backProp(node.left, deltas[:self.hiddenDim])
self.backProp(node.right, deltas[self.hiddenDim:])

Lecture 1, Slide 33 Richard Socher 4/29/16



BTS: Optimization

e As before, we can plug the gradients into a
standard off-the-shelf L-BFGS optimizer or SGD

e Best results with AdaGrad (Duchiet al, 2011):

@7

¢
\/2721 972',2'

Ori =011 — Jt.i

* For non-continuous objective use subgradient
method (Ratliff et al. 2007)
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Discussion: Simple RNN

Good results with single matrix RNN (more later)

Single weight matrix RNN could capture some
phenomena but not adequate for more complex,
higher order composition and parsing long sentences

The composition function is the same
for all syntactic categories, punctuation, etc



Solution: Syntactically-Untied RNN

e |dea: Condition the composition function on the
syntactic categories, “untie the weights”

e Allows for different composition functions for pairs
of syntactic categories, e.g. Adv + AdjP, VP + NP

e Combines discrete syntactic categories with
continuous semantic information

Standard Recursive Neural Network

Syntactically Untied Recursive Neural Network

(v

(A, a=@®) (B, b=@5 (c c-@)

/)

P psg) = f{ W(AP”)[Z JN
i

(A, a=@9) (B, b=) (C, c=©9)




Solution: Compositional Vector Grammars

 Problem: Speed. Every candidate score in beam
search needs a matrix-vector product.

e Solution: Compute score only for a subset of trees
coming from a simpler, faster model (PCFG)

* Prunes very unlikely candidates for speed

* Provides coarse syntactic categories of the
children for each beam candidate

e Compositional Vector Grammars: CVG = PCFG + RNN



Details: Compositional Vector Grammar

e Scores at each node computed by combination of
PCFG and SU-RNN:

S (p(l)) — ("l?(B’G))Tp(l) —+ log p(P1 — B (Y)

e |nterpretation: Factoring discrete and continuous
parsing in one model:

P((P1,p1) = (B,b)(C,c))
:P(pl — b C‘Pl — B C)P(Pl — B C)

e Socheret al. (2013)



Related work for recursive neural networks

Pollack (1990): Recursive auto-associative memories

Previous Recursive Neural Networks work by
Goller & Kiichler (1996), Costa et al. (2003) assumed
fixed tree structure and used one hot vectors.

Hinton (1990) and Bottou (2011): Related ideas about
recursive models and recursive operators as smooth
versions of logic operations
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Related Work for parsing

e Resulting CVG Parseris related to previous work that extends PCFG
parsers

e Klein and Manning (2003a) : manual feature engineering

e Petrov etal. (2006) : learningalgorithm that splits and merges
syntactic categories

e Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each
category with a lexical item

e Halland Klein (2012) combine several such annotation schemes in a
factored parser.

e (CVGs extend these ideas from discrete representationsto richer
continuous ones



Experiments
e Standard WSJ split, labeled F1

e Based on simple PCFG with fewer states

e Fast pruning of search space, few matrix-vector products
e 3.8% higher F1, 20% faster than Stanford factored parser

Parser ____________|TestAll Sentences

Stanford PCFG, (Klein and Manning, 2003a) 85.5
Stanford Factored (Klein and Manning, 2003b) 86.6
Factored PCFGs (Hall and Klein, 2012) 89.4
Collins (Collins, 1997) 87.7
SSN (Henderson, 2004) 89.4
Berkeley Parser (Petrov and Klein, 2007) 90.1
CVG (RNN) (Socher et al., ACL 2013) 85.0
CVG (SU-RNN) (Socher et al., ACL 2013) 90.4
Charniak - Self Trained (McClosky et al. 2006) 91.0

Charniak - Self Trained-ReRanked (McClosky et al. 2006) 92.1



SU-RNN Analysis

* Learns notion of soft head words

DT-NP

VP-NP




Analysis of resulting vector representations

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. Allthe figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’tdisclose the terms

Sales grew almost 7% to SUNK m. from SUNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.




SU-RNN Analysis

e Can transfer semantic information from
single related example

* Train sentences:
* He eats spaghetti with a fork.
* She eats spaghetti with pork.
* Test sentences
* He eats spaghetti with a spoon.
* He eats spaghetti with meat.



SU-RNN Analysis

(a) Stanford factored parser

S S
NP VP NP VP
| |
PRP PRP
| VBZ NP | VBZ NP
He | /\ He | /\
eats N Bp eats NP PP
| N
erqs N NNS IN NP
IN NP | |
| | PN spaghetti ~ with ~ PRP

spaghetti iy DT NN |

| | meat
a spoon

< (b) Compositional Vector Grammar

/\ NP/S\VP

NP VP |
PRP
PRP | VBZ NP
| He | /\
He VBZ NP PP eats NP PP
eats NNS IN NP NII\IS IN NP
spaghetti i DT NN spaglhetti with NN

a spoon meat



Labeling in Recursive Neural Networks

e \We can use each node’s
representation as features for a NP

softmax classifier:
Softmax

Layer

p(clp) = softmax(Sp)

)
3
e Training similar to model in part 1 with T
standard cross-entropy error + scores

Neural
Network
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Scene Parsing

Similar principle of compositionality.

47

The meaningof a scene image is
also a function of smaller regions,

how they combine as partsto form
larger objects,

and howthe objects interact.




Algorithm for Parsing Images

Same Recursive Neural Network as for naturallanguage parsing!
(Socher et al. ICML 2011)

Parsing Natural Scene Images

[ XXXX)

Grass People Building Tree
XXX XXX [CXXXXXX)) CXIXXXXX)

[XXXXXYX)

-~

&

Semantic
CXIXIXT) (.......T QXXX X XX XXXX)) Representations
(eeooocoecee)| (coooceee) (coe000ee®) Features
A & Segments
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Multi-class segmentation

Btece [Proad [Porass [Pwater [JPoidg

. mntn - fg obj.

W sky

Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Recursive Neural Network 78.1

29 Stanford Background Dataset (Gould et al. 2009)



Lecture 1, Slide 50 Richard Socher 4/29/16



