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Overview

4/29/16Richard	Socher2

Video	issues	and	fire	alarm

Finish	LSTMs

Recursive	Neural	Networks

• Motivation:	Compositionality

• Structure	prediction:	Parsing

• Backpropagation through	Structure

• Vision	Example

Next	Lecture:

• RvNN improvements



Long-short-term-memories	(LSTMs)
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• We	can	make	the	units	even	more	complex

• Allow	each	time	step	to	modify	
• Input	gate	(current	cell	matters)

• Forget	(gate	0,	forget	past)

• Output	(how	much	cell	is	exposed)

• New	memory	cell

• Final	memory	cell:

• Final	hidden	state:	



Illustrations	all	a	bit	overwhelming	;)
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http://people.idsia.ch/~juergen/lstm/sld017.htm

http://deeplearning.net/tutorial/lstm.html

Intuition:	memory	cells	can	keep	information	 intact,	unless	inputs	makes	them
forget	it	or	overwrite	it	with	new	input.
Cell	can	decide	to	output	 this	information	or	just	store	it

Long	Short-Term	Memory	by	Hochreiter and	Schmidhuber (1997)
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LSTMs	are	currently	very	hip!
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• En	vogue	default	model	for	most	sequence	labeling	
tasks

• Very	powerful,	especially	when	stacked	and	made	
even	deeper	(each	hidden	layer	is	already	computed	
by	a	deep	internal	network)

• Most	useful	if	you	have	lots	and	lots	of	data



Deep	LSTMs	compared	to	traditional	systems	2015
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the
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Sequence	 to	Sequence	Learning	by	Sutskever et	al.	2014	



Deep	LSTMs	(with	a	lot	more	tweaks)	today
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WMT	2016	competition	results	from	yesterday



Deep	LSTM	for	Machine	Translation
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Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
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task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.
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after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	 to	Sequence	Learning	by	Sutskever et	al.	2014	

PCA	of	vectors	from	last	time	step	hidden	 layer



Further	Improvements:	More	Gates!
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Gated	Feedback	Recurrent	Neural	Networks,	Chung	et	al.	2015
Gated Feedback Recurrent Neural Networks

(a) Conventional stacked RNN (b) Gated Feedback RNN

Figure 1. Illustrations of (a) conventional stacking approach and (b) gated-feedback approach to form a deep RNN architecture. Bullets
in (b) correspond to global reset gates. Skip connections are omitted to simplify the visualization of networks.
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Fig. 1 illustrates the difference between the conventional
stacked RNN and our proposed GF-RNN. In both mod-
els, information flows from lower layers to upper layers,
respectively, corresponding to finer timescale and coarser
timescale. The GF-RNN, however, further allows infor-
mation from the upper recurrent layer, corresponding to
coarser timescale, flows back into the lower layers, corre-
sponding to finer timescales.

We call this RNN with a fully-connected recurrent tran-
sition and global reset gates, a gated-feedback RNN (GF-
RNN). In the remainder of this section, we describe how to
use the previously described LSTM unit, GRU, and more
traditional tanh unit in the GF-RNN.

3.1. Practical Implementation of GF-RNN

3.1.1. tanh UNIT

For a stacked tanh-RNN, the signal from the previous
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i!j are the weight matrices of the
incoming connections from the input and the i-th module,
respectively. Compared to Eq. (2), the only difference is
that the previous hidden states are controlled by the global
reset gates.

3.1.2. LONG SHORT-TERM MEMORY AND GATED
RECURRENT UNIT

In the cases of LSTM and GRU, we do not use the global
reset gates when computing the unit-wise gates. In other
words, Eqs. (5)–(7) for LSTM, and Eqs. (9) and (11) for
GRU are not modified. We only use the global reset gates
when computing the new state (see Eq. (4) for LSTM, and
Eq. (10) for GRU).
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In the case of a GRU, similarly,
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4. Experiment Settings

4.1. Tasks

We evaluated the proposed gated-feedback RNN (GF-
RNN) on character-level language modeling and Python



Summary
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• Recurrent	Neural	Networks	are	powerful

• A	lot	of	ongoing	work	right	now

• Gated	Recurrent	Units	even	better

• LSTMs	maybe	even	better	(jury	still	out)

• This	was	an	advanced	lecture	à gain	intuition,	
encourage	exploration

• Next	up:	Recursive	Neural	Networks
simpler	and	also	powerful	:)



Building	on	Word	Vector	Space	Models
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Semantic	Vector	Spaces

• Distributional	Techniques
• Brown	Clusters
• Useful	as	features	inside	

models,	e.g.	CRFs	for	NER,	etc.
• Cannot	capture	longer	phrases

Single	Word	Vectors Documents	Vectors

• Bag	of	words	models
• PCA	(LSA, LDA)
• Great	for	IR,	document	

exploration,	etc.
• Ignore	word	order,	no	

detailed	understanding

Vectors	representing
Phrases	and	Sentences
that	do	not	ignore	word	order
and	capture	semantics	for	NLP	tasks



How	should	we	map	phrases	into	a	vector	space?
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Sentence	Parsing:	What	we	want
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Learn	Structure	and	Representation

NP
NP

PP

S

VP

5
2 3

3

8
3

5
4

7
3

The															cat														sat															on														the															mat.

9
1

5
3

8
5

9
1

4
3

7
1

15



Learn	Structure	and	Representation?

• Do	we	really	need	to	learn	this	structure?

4/29/16Richard	SocherLecture	1,	Slide	 16



Sidenote:	Recursive	vs recurrent	neural	networks
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Sidenote:	Are	languages	recursive?

• Cognitively	debatable
• But:	recursion	helpful	in	describing	natural	language
• Example:	“the	church	which	has	nice	windows”,	a	noun	phrase	

containing	a	relative	clause	that	contains	a	noun	phrases
• Arguments	for	now:	1)	Helpful	in	disambiguation:

4/29/16Richard	SocherLecture	1,	Slide	 18



Is	recursion	useful?

2)	Helpful	for	some	tasks	to	refer	to	specific	phrases:
• John	and	Jane	went	to	a	big	festival.	They	enjoyed	the	trip	
and	the	music	there.

• “they”:	John	and	Jane
• “the	trip”:	went	to	a	big	festival
• “there”:	big	festival

3)	Labeling	less	clear	if	specific	to	only	subphrases
• I	liked	the	bright	screen	but	not	the	buggy	slow	keyboard of	
the	phone.	It	was	a	pain	to	type	with.	It	was	nice	to	look	at.

4)	Works	better	for	some	tasks	to	use	grammatical	tree	structure

• This	is	still	up	for	debate.

4/29/16Richard	SocherLecture	1,	Slide	 19



Recursive	Neural	Networks	for	Structure	Prediction
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Recursive	Neural	Network	Definition

score		=		UTp

p =		tanh(W +	b),

SameW parameters	at	all	nodes	
of	the	tree
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Parsing	a	sentence	with	an	RNN
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Parsing	a	sentence
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Parsing	a	sentence
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Parsing	a	sentence
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Max-Margin	Framework	- Details

• The	score	of	a	tree	is	computed	by	
the	sum	of	the	parsing	decision
scores	at	each	node:
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8
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Max-Margin	Framework	- Details

• Similar	to	max-margin	parsing	(Taskar et	al.	2004),	a	supervised	
max-margin	objective

• The	loss																penalizes	all	incorrect	decisions

• Structure	search	for	A(x)	was	maximally	greedy
• Instead:	Beam	Search	with	Chart

27



Backpropagation	Through	Structure

Introduced	by	Goller&	Küchler (1996)	

Principally	the	same	as	general	backpropagation

Three	differences	resulting	from	the	recursion	and	tree	structure:
1. Sum	derivatives	of	W from	all	nodes
2. Split	derivatives	at	each	node
3. Add	error	messages	from	parent	+	node	itself

28

The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:

@E

n

@W

(n
l

�1)
ij

= (y
i

� t

i

)a(nl

�1)
j

= �

(n
l

)
i

a

(n
l

�1)
j

. (47)

So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�

(l) =
⇣
(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)

7

where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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Which in one simplified vector notation becomes:
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In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �

(n
l

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.
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BTS:	1)	Sum	derivatives	of	all	nodes

You	can	actually	assume	it’s	a	different	W at	each	node
Intuition	via	example:

If	we	take	separate	derivatives	of	each	occurrence,	we	get	same:
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BTS:	2)	Split	derivatives	at	each	node

During	forward	prop,	the	parent	is	computed	using	2	children

Hence,	the	errors	need	to	be	computed	wrt each	of	them:

where	each	child’s	error	is	n-dimensional

8
5

3
3

8
3

c1
p		=		tanh(W							+	b)c1

c2c2

8
5

3
3

8
3

c1 c2
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BTS:	3)	Add	error	messages

• At	each	node:	
• What	came	up	(fprop)	must	come	down	(bprop)
• Total	error	messages	± =	error	messages	 from	parent	+	error	
message	from	own	score
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BTS	Python	Code:	forwardProp
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BTS	Python	Code:	backProp

4/29/16Richard	SocherLecture	1,	Slide	 33

The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�

(l) =
⇣
(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)
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where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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Which in one simplified vector notation becomes:
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In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �

(n
l

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References
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BTS:	Optimization

• As	before,	we	can	plug	the	gradients	into	a	
standard	off-the-shelf	L-BFGS	optimizer	or	SGD

• Best	results	with	AdaGrad (Duchi et	al,	2011):	

• For	non-continuous	objective	use	subgradient
method (Ratliff	et	al.	2007)
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Discussion:	Simple	RNN
• Good	results	with	single	matrix	RNN	(more	later)

• Single	weight	matrix	RNN	could	capture	some	
phenomena	but	not	adequate	for	more	complex,	
higher	order	composition	and	parsing	long	sentences

• The	composition	function	is	the	same	
for	all	syntactic	categories,	punctuation,	etc

W

c1 c2

p
Wscore s



Solution:	Syntactically-Untied	RNN

• Idea:	Condition	the	composition	function	on	the	
syntactic	categories,	“untie	the	weights”

• Allows	for	different	composition	functions	for	pairs	
of	syntactic	categories,	e.g.	Adv	+	AdjP,	VP	+	NP

• Combines	discrete	syntactic	categories	with	
continuous	semantic	information



Solution:	Compositional	Vector	Grammars

• Problem:	Speed.	Every	candidate	score	in	beam	
search	needs	a	matrix-vector	product.

• Solution:	Compute	score	only	for	a	subset	of	trees	
coming	from	a	simpler,	faster	model	(PCFG)
• Prunes	very	unlikely	candidates	for	speed
• Provides	coarse	syntactic	categories	of	the	
children	for	each	beam	candidate

• Compositional	Vector	Grammars:	CVG	=	PCFG	+	RNN



Details:	Compositional	Vector	Grammar

• Scores	at	each	node	computed	by	combination	of	
PCFG	and	SU-RNN:

• Interpretation:	Factoring	discrete	and	continuous	
parsing	in	one	model:

• Socher	et	al.	(2013)



Related	work	for	recursive	neural	networks	

Pollack	(1990):	Recursive	auto-associative	memories

Previous	Recursive	Neural	Networks	work	by	
Goller &	Küchler (1996),	Costa	et	al.	(2003) assumed	
fixed	tree	structure	and	used	one	hot	vectors.

Hinton	(1990)	and	Bottou (2011):	Related	ideas	about	
recursive	models	and	recursive	operators	as	smooth	
versions	of	logic	operations
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Related	Work	for	parsing

• Resulting	CVG	Parser	is	related	to	previous	work	that	extends	PCFG	
parsers

• Klein	and	Manning	(2003a)	:	manual	feature	engineering
• Petrov et	al.	(2006)	:	learning	algorithm	that	splits	and	merges	

syntactic	categories	
• Lexicalized	parsers	(Collins,	2003;	Charniak,	2000):	describe	each	

category	with	a	lexical	item
• Hall	and	Klein	(2012)	combine	several	such	annotation	schemes	in	a	

factored	parser.	
• CVGs	extend	these	ideas	from	discrete	representations	to	richer	

continuous	ones



Experiments
• Standard	WSJ	split,	labeled	F1
• Based	on	simple	PCFG	with	fewer	states
• Fast	pruning	of	search	space,	few	matrix-vector	products
• 3.8%	higher	F1,	20%	faster	than	Stanford	factored	parser

Parser Test, All	Sentences
Stanford	PCFG, (Klein	and	Manning,	 2003a) 85.5
Stanford Factored	(Klein	and	Manning,	 2003b) 86.6

Factored	PCFGs	(Hall and	Klein,	2012) 89.4
Collins	(Collins, 1997) 87.7
SSN	(Henderson, 2004) 89.4
Berkeley Parser	(Petrov and	Klein,	2007) 90.1
CVG	(RNN)	(Socher	et	al., ACL	2013) 85.0
CVG	(SU-RNN)	(Socher	et	al., ACL	2013) 90.4
Charniak - Self	Trained (McClosky et	al.	2006) 91.0
Charniak - Self	Trained-ReRanked (McClosky et	al.	2006) 92.1



SU-RNN	Analysis

• Learns	notion	of	soft	head	words

DT-NP	

VP-NP



Analysis	of	resulting	vector	representations

All	the	figures	are	adjusted	for	seasonal	variations
1.	All	the	numbers	are	adjusted	for	seasonal	fluctuations
2.	All	the	figures	are	adjusted	to	remove	usual	seasonal	patterns

Knight-Ridder	wouldn’t	comment	on	the	offer
1.	Harsco	declined	to	say	what	country	placed	the	order
2.	Coastal	wouldn’t	disclose	the	terms

Sales	grew	almost	7%	to	$UNK	m.	from	$UNK	m.
1.	Sales	rose	more	than	7%	to	$94.9	m.	from	$88.3	m.
2.	Sales	surged	40%	to	UNK	b.	yen	from	UNK	b.



SU-RNN	Analysis

• Can	transfer	semantic	information	from	
single	related	example

• Train	sentences:
• He	eats	spaghetti	with	a	fork.	
• She	eats	spaghetti	with	pork.	

• Test	sentences	
• He	eats	spaghetti	with	a	spoon.	
• He	eats	spaghetti	with	meat.



SU-RNN	Analysis



Labeling	in	Recursive	Neural	Networks

Neural 
Network

8
3

• We	can	use	each node’s	
representation	as	features	for	a	
softmax classifier:

• Training	similar	to	model	in	part	1	with	
standard	cross-entropy	error	+	scores

Softmax
Layer

NP
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Scene	Parsing

• The	meaning	of	a	scene	image	is	
also	a	function	of	smaller	regions,	

• how	they	combine	as	parts	to	form	
larger	objects,

• and	how	the	objects	interact.

Similar	principle	of	compositionality.
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Algorithm	for	Parsing	Images

Same	Recursive	Neural	Network	as	for	natural	language	parsing!	
(Socher	et	al.	ICML	2011)

Features

Grass Tree

Segments

Semantic		
Representations

People Building

Parsing	Natural	Scene	ImagesParsing	Natural	Scene	Images
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Multi-class	segmentation

Method Accuracy

Pixel	CRF (Gould	et	al.,	ICCV	2009) 74.3

Classifier on	superpixel features 75.9

Region-based	energy (Gould	et	al.,	ICCV	2009) 76.4

Local	labelling (Tighe &	Lazebnik,	ECCV	2010) 76.9

Superpixel MRF	(Tighe &	Lazebnik, ECCV	2010) 77.5

Simultaneous	MRF	(Tighe &	Lazebnik,	ECCV	2010) 77.5

Recursive	Neural	Network 78.1

Stanford	Background	Dataset	(Gould	et	al.	2009)49
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