CS224d: Deep NLP

Lecture 9: Wrap up: LSTMs and Recursive Neural Networks

Richard Socher

richard@metamind.io

Overview

Video issues and fire alarm

Finish LSTMs

Recursive Neural Networks

- Motivation: Compositionality
- Structure prediction: Parsing
- Backpropagation through Structure
- Vision Example

Next Lecture:

• RvNN improvements

Long-short-term-memories (LSTMs)

- We can make the units even more complex
- Allow each time step to modify
 - Input gate (current cell matters) $i_t = \sigma \left(W^{(i)} x_t + U^{(i)} h_{t-1} \right)$
 - Forget (gate 0, forget past)
 - Output (how much cell is exposed) $o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right)$
 - New memory cell
- Final memory cell:
- Final hidden state:

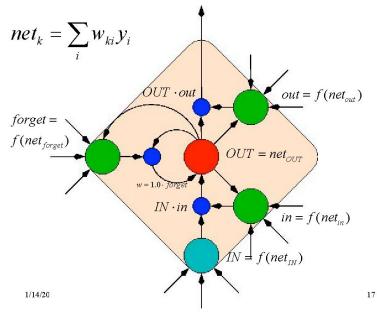
 $c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$

 $f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right)$

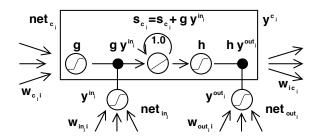
 $\tilde{c}_t = \tanh\left(W^{(c)}x_t + U^{(c)}h_{t-1}\right)$

$$h_t = o_t \circ \tanh(c_t)$$

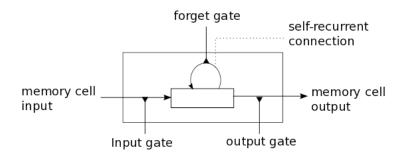
Illustrations all a bit overwhelming ;)



http://people.idsia.ch/~juergen/lstm/sld017.htm



Long Short-Term Memory by Hochreiter and Schmidhuber (1997)



http://deeplearning.net/tutorial/lstm.html

Intuition: memory cells can keep information intact, unless inputs makes them forget it or overwrite it with new input. Cell can decide to output this information or just store it

Richard Socher

LSTMs are currently very hip!

 En vogue default model for most sequence labeling tasks

 Very powerful, especially when stacked and made even deeper (each hidden layer is already computed by a deep internal network)

• Most useful if you have lots and lots of data

Deep LSTMs compared to traditional systems 2015

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

Table 1: The performance of the LSTM on WMT'14 English to French test set (ntst14). Note that an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of size 12.

Method	test BLEU score (ntst14)
Baseline System [29]	33.30
Cho et al. [5]	34.54
Best WMT'14 result [9]	37.0
Rescoring the baseline 1000-best with a single forward LSTM	35.61
Rescoring the baseline 1000-best with a single reversed LSTM	35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs	36.5
Oracle Rescoring of the Baseline 1000-best lists	~45

Sequence to Sequence Learning by Sutskever et al. 2014

Deep LSTMs (with a lot more tweaks) today

WMT 2016 competition results from yesterday

Scored Systems

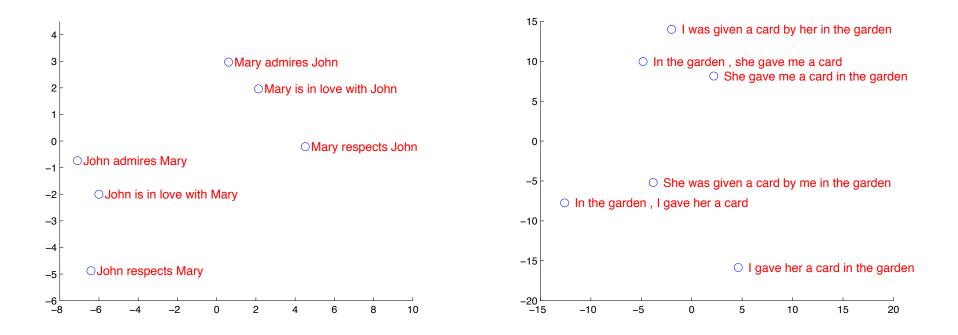
System	Submitter	System Notes	Constraint	Run Notes	<u>BLEU</u>
uedin-nmt-ensemble (Details)	rsennrich University of Edinburgh	BPE neural MT system with monolingual training data (back- translated). ensemble of 4, reranked with right- to-left model.	yes		34.8
metamind-ensemble <i>(Details)</i>	jekbradbury Salesforce MetaMind	Neural MT system based on Luong 2015 and Sennrich 2015, using Morfessor for subword splitting, with back-translated monolingual augmentation. Ensemble of 3 checkpoints from one run plus 1 Y-LSTM (see entry).	yes		32.8
uedin-nmt-single (Details)	rsennrich University of Edinburgh	BPE neural MT system with monolingual training data (back- translated). single model. (contrastive)	yes		32.2

<u>KIT (Details)</u>	niehues <i>KIT</i>	Phrase-based MT with NMT in rescoring	yes		29.7
uedin-pbt-wmt16-en-de (Details)	Matthias Huck University of Edinburgh	Phrase-based Moses	yes		29.1
Moses Phrase-Based (Details)	jhu-smt Johns Hopkins University	Phrase-based model, word clusters for all model components (LM, OSM, LR, sparse features), neural network joint model, large cc LM	yes	[26-7]	29.0
uedin-pbt-wmt16-en-de-contrastive (Details)	Matthias Huck University of Edinburgh	Phrase-based Moses (contrastive, 2015 system)	yes		29.0

7

Deep LSTM for Machine Translation

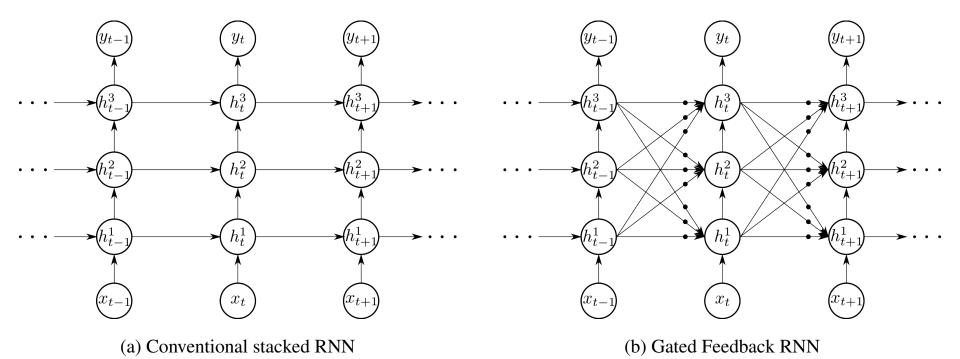
PCA of vectors from last time step hidden layer



Sequence to Sequence Learning by Sutskever et al. 2014

Further Improvements: More Gates!

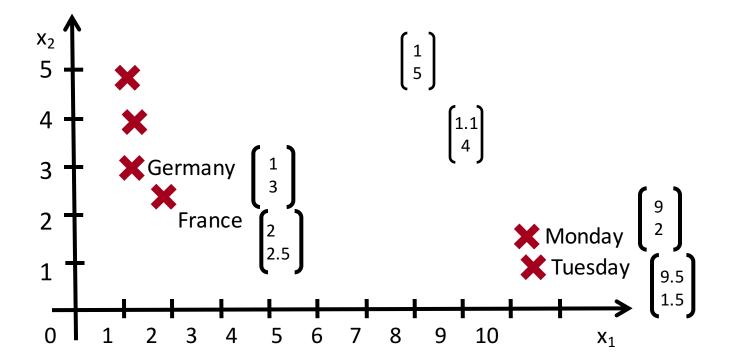
Gated Feedback Recurrent Neural Networks, Chung et al. 2015



Summary

- Recurrent Neural Networks are powerful
- A lot of ongoing work right now
- Gated Recurrent Units even better
- LSTMs maybe even better (jury still out)
- This was an advanced lecture → gain intuition, encourage exploration
- Next up: Recursive Neural Networks simpler and also powerful :)

Building on Word Vector Space Models



the country of my birth the place where I was born

But how can we represent the meaning of longer phrases?

¹¹ By mapping them into the same vector space!

Semantic Vector Spaces

Vectors representing Phrases and Sentences that do not ignore word order and capture semantics for NLP tasks

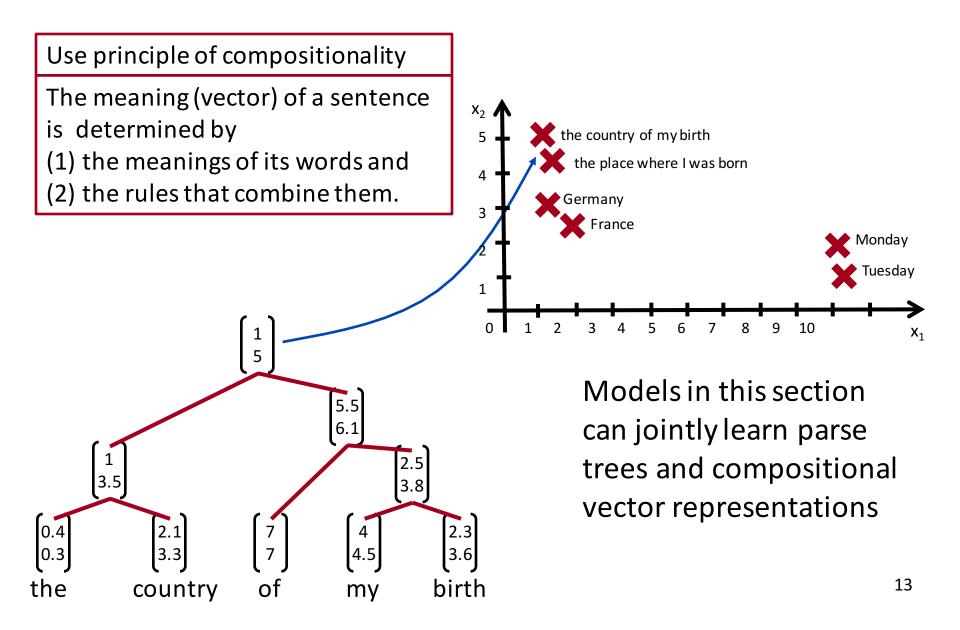
Single Word Vectors

- Distributional Techniques
- Brown Clusters
- Useful as features inside models, e.g. CRFs for NER, etc.
- Cannot capture longer phrases

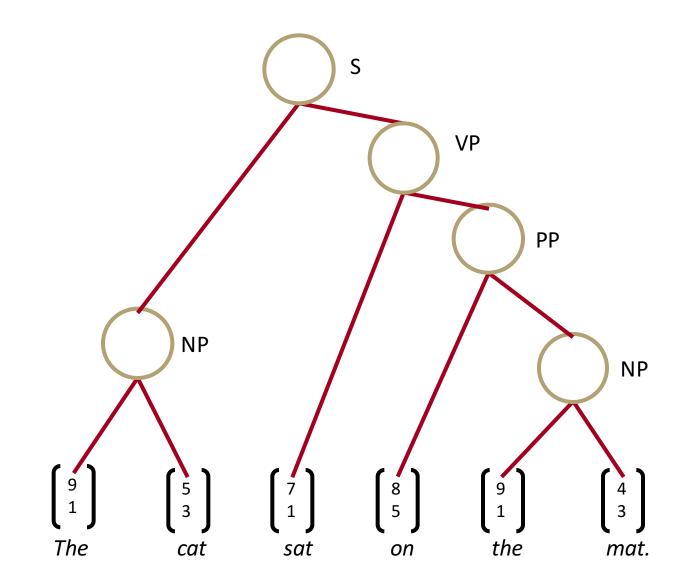
Documents Vectors

- Bag of words models
- PCA (LSA, LDA)
- Great for IR, document exploration, etc.
- Ignore word order, no detailed understanding

How should we map phrases into a vector space?

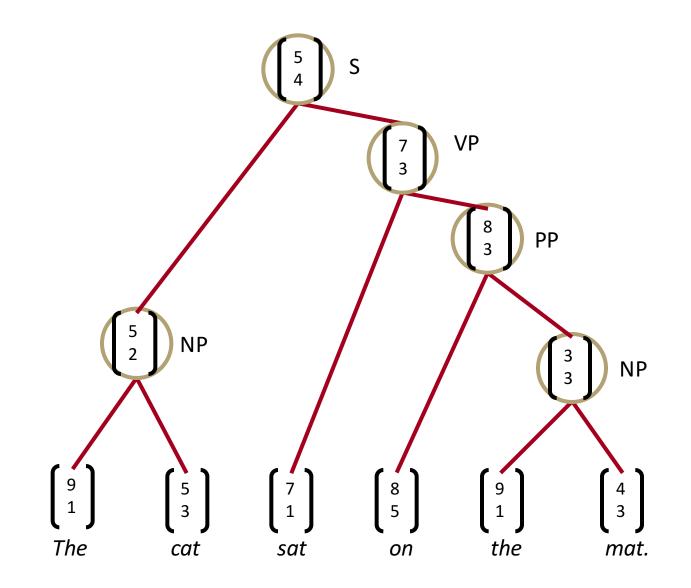


Sentence Parsing: What we want



14

Learn Structure and Representation

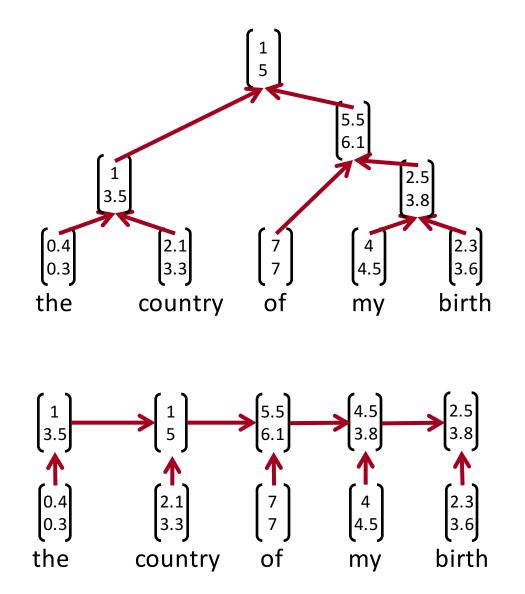


15

Learn Structure and Representation?

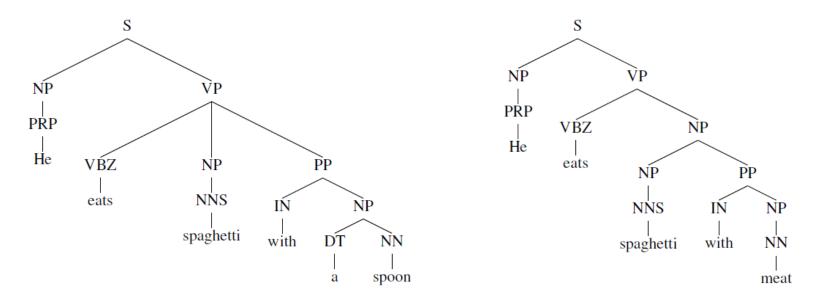
• Do we really need to learn this structure?

Sidenote: Recursive vs recurrent neural networks



Sidenote: Are languages recursive?

- Cognitively debatable
- But: recursion helpful in describing natural language
- Example: "the church which has nice windows", a noun phrase containing a relative clause that contains a noun phrases
- Arguments for now: 1) Helpful in disambiguation:



Is recursion useful?

2) Helpful for some tasks to refer to specific phrases:

- John and Jane went to a big festival. They enjoyed the trip and the music there.
- "they": John and Jane
- "the trip": went to a big festival
- "there": big festival
- 3) Labeling less clear if specific to only subphrases
 - I liked the bright screen but not the buggy slow keyboard of the phone. It was a pain to type with. It was nice to look at.

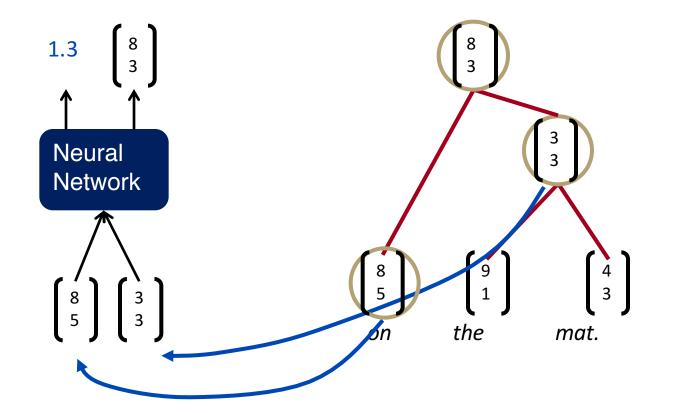
4) Works better for some tasks to use grammatical tree structure

• This is still up for debate.

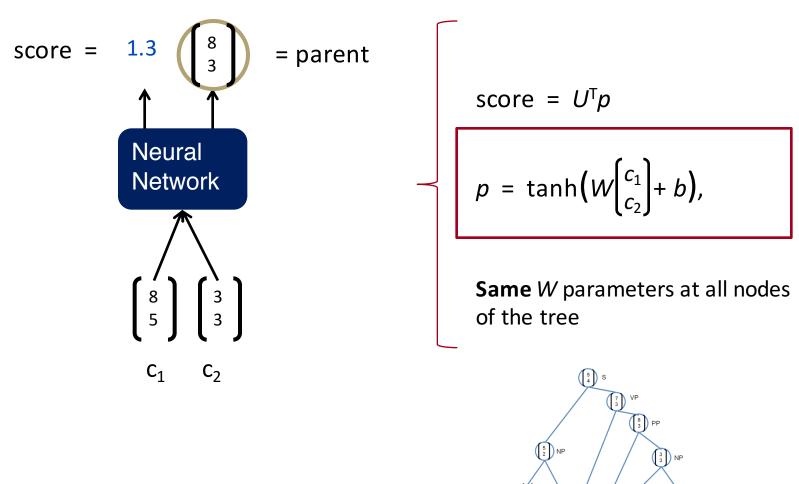
Recursive Neural Networks for Structure Prediction

Inputs: two candidate children's representations Outputs:

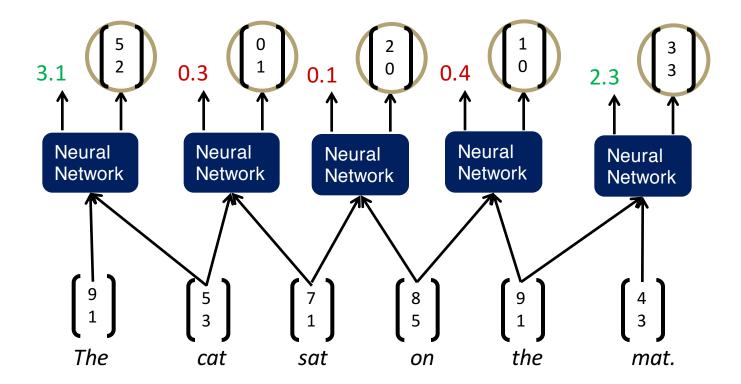
- 1. The semantic representation if the two nodes are merged.
- 2. Score of how plausible the new node would be.



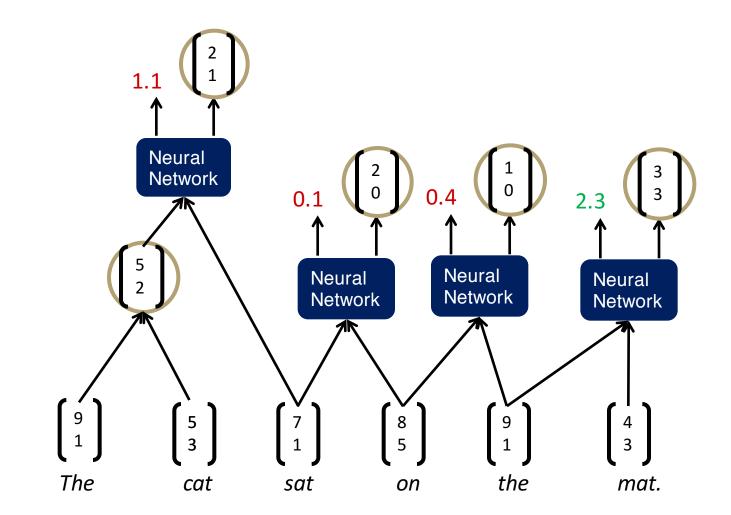
Recursive Neural Network Definition



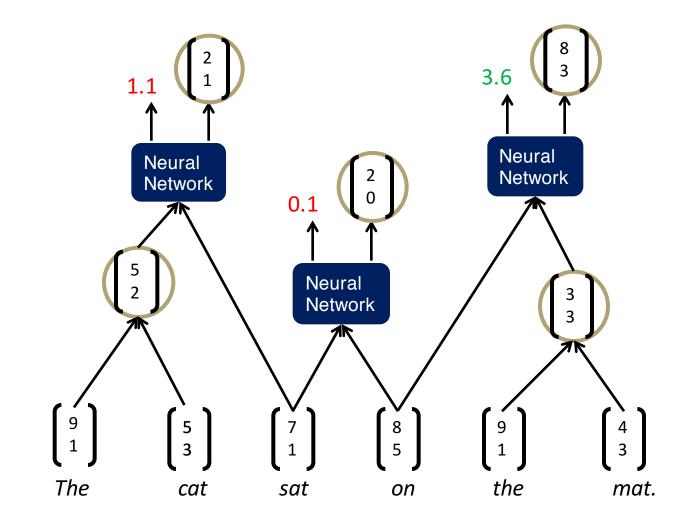
Parsing a sentence with an RNN



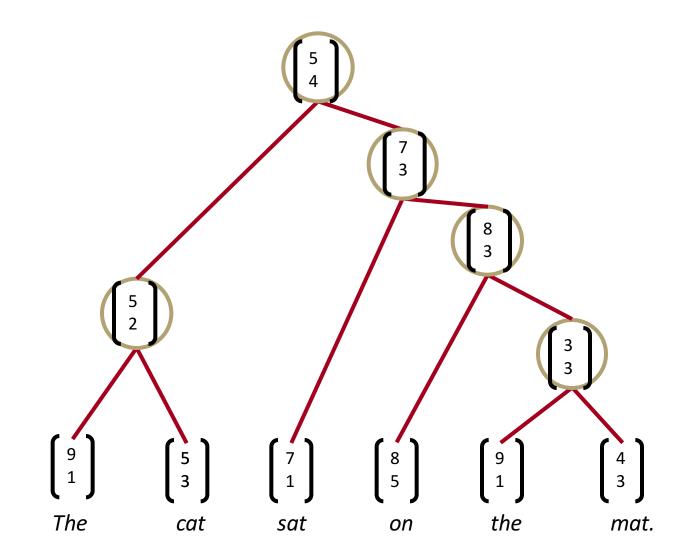
Parsing a sentence



Parsing a sentence



Parsing a sentence



25

Max-Margin Framework - Details

 The score of a tree is computed by the sum of the parsing decision scores at each node:

$$s(x,y) = \sum_{n \in nodes(y)} s_n$$

Max-Margin Framework - Details

 Similar to max-margin parsing (Taskar et al. 2004), a supervised max-margin objective

$$J = \sum_{i} s(x_i, y_i) - \max_{y \in A(x_i)} \left(s(x_i, y) + \Delta(y, y_i) \right)$$

- The loss $\Delta(y, y_i)$ penalizes all incorrect decisions
- Structure search for A(x) was maximally greedy
 - Instead: Beam Search with Chart

Backpropagation Through Structure

Introduced by Goller & Küchler (1996)

Principally the same as general backpropagation

$$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \circ f'(z^{(l)}), \qquad \frac{\partial}{\partial W^{(l)}} E_R = \delta^{(l+1)} (a^{(l)})^T + \lambda W^{(l)}$$

Three differences resulting from the recursion and tree structure:

- 1. Sum derivatives of *W* from all nodes
- 2. Split derivatives at each node
- 3. Add error messages from parent + node itself

BTS: 1) Sum derivatives of all nodes

You can actually assume it's a different *W* at each node Intuition via example:

$$\frac{\partial}{\partial W} f(W(f(Wx)))$$

$$= f'(W(f(Wx)) \left(\left(\frac{\partial}{\partial W} W \right) f(Wx) + W \frac{\partial}{\partial W} f(Wx) \right)$$

$$= f'(W(f(Wx)) \left(f(Wx) + W f'(Wx) x \right)$$

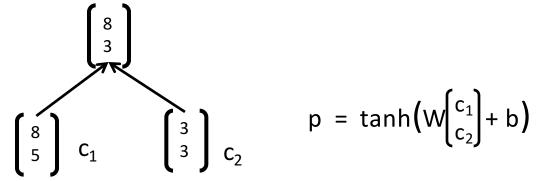
If we take separate derivatives of each occurrence, we get same:

$$\frac{\partial}{\partial W_2} f(W_2(f(W_1x)) + \frac{\partial}{\partial W_1} f(W_2(f(W_1x)))$$

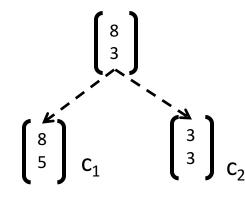
- $= f'(W_2(f(W_1x))(f(W_1x)) + f'(W_2(f(W_1x))(W_2f'(W_1x)x))$
- $= f'(W_2(f(W_1x))(f(W_1x) + W_2f'(W_1x)x))$
- = f'(W(f(Wx))(f(Wx) + Wf'(Wx)x))

BTS: 2) Split derivatives at each node

During forward prop, the parent is computed using 2 children



Hence, the errors need to be computed wrt each of them:

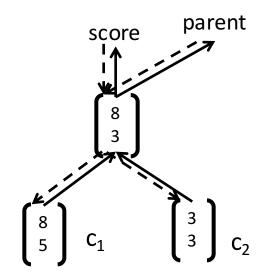


where each child's error is *n*-dimensional

$$\delta_{p \to c_1 c_2} = [\delta_{p \to c_1} \delta_{p \to c_2}]$$

BTS: 3) Add error messages

- At each node:
 - What came up (fprop) must come down (bprop)
 - Total error messages ± = error messages from parent + error message from own score



BTS Python Code: forwardProp

```
def forwardProp(self,node):
    # Recursion
    ...
    # This node's hidden activation
    node.h = np.dot(self.W,np.hstack([node.left.h, node.right.h])) + self.b
    # Relu
    node.h[node.h<0] = 0
    # Softmax
    node.probs = np.dot(self.Ws,node.h) + self.bs
    node.probs -= np.max(node.probs)
    node.probs = np.exp(node.probs)</pre>
```

```
node.probs = node.probs/np.sum(node.probs)
```

BTS Python Code: backProp

```
def backProp(self,node,error=None):
    # Softmax grad
    deltas = node.probs
    deltas[node.label] -= 1.0
    self.dWs += np.outer(deltas,node.h)
    self.dbs += deltas
    deltas = np.dot(self.Ws.T,deltas)
```

```
# Add deltas from above
if error is not None:
    deltas += error
```

```
# f'(z) now:
deltas *= (node.h != 0)
```

```
# Update word vectors if leaf node:
if node.isLeaf:
    self.dL[node.word] += deltas
    return
```

```
# Recursively backprop
if not node.isLeaf:
    self.dW += np.outer(deltas,np.hstack([node.left.h, node.right.h]))
    self.db += deltas
    # Error signal to children
    deltas = np.dot(self.W.T, deltas)
    self.backProp(node.left, deltas[:self.hiddenDim])
    self.backProp(node.right, deltas[self.hiddenDim:])
```

$$\frac{\partial}{\partial W^{(l)}} E_R = \delta^{(l+1)} (a^{(l)})^T + \lambda W^{(l)}$$

 $\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \circ f'(z^{(l)}),$

BTS: Optimization

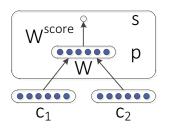
- As before, we can plug the gradients into a standard off-the-shelf L-BFGS optimizer or SGD
- Best results with AdaGrad (Duchi et al, 2011):

$$\theta_{t,i} = \theta_{t-1,i} - \frac{\alpha}{\sqrt{\sum_{\tau=1}^{t} g_{\tau,i}^2}} g_{t,i}$$

• For non-continuous objective use subgradient *method* (Ratliff et al. 2007)

Discussion: Simple RNN

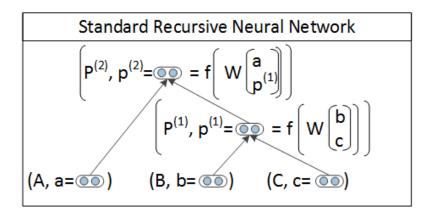
- Good results with single matrix RNN (more later)
- Single weight matrix RNN could capture some phenomena but not adequate for more complex, higher order composition and parsing long sentences

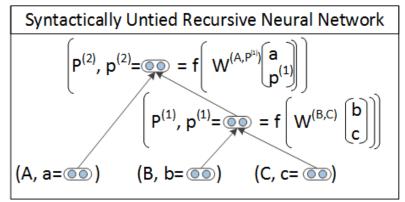


• The composition function is the same for all syntactic categories, punctuation, etc

Solution: Syntactically-Untied RNN

- Idea: Condition the composition function on the syntactic categories, "untie the weights"
- Allows for different composition functions for pairs of syntactic categories, e.g. Adv + AdjP, VP + NP
- Combines discrete syntactic categories with continuous semantic information





Solution: Compositional Vector Grammars

- Problem: Speed. Every candidate score in beam search needs a matrix-vector product.
- Solution: Compute score only for a subset of trees coming from a simpler, faster model (PCFG)
 - Prunes very unlikely candidates for speed
 - Provides coarse syntactic categories of the children for each beam candidate
- Compositional Vector Grammars: CVG = PCFG + RNN

Details: Compositional Vector Grammar

 Scores at each node computed by combination of PCFG and SU-RNN:

$$s\left(p^{(1)}\right) = \left(v^{(B,C)}\right)^T p^{(1)} + \log P(P_1 \to B \ C)$$

 Interpretation: Factoring discrete and continuous parsing in one model:

$$P((P_1, p_1) \to (B, b)(C, c))$$

= $P(p_1 \to b \ c | P_1 \to B \ C) P(P_1 \to B \ C)$

• Socher et al. (2013)

Related work for recursive neural networks

Pollack (1990): Recursive auto-associative memories

Previous Recursive Neural Networks work by Goller & Küchler (1996), Costa et al. (2003) assumed fixed tree structure and used one hot vectors.

Hinton (1990) and Bottou (2011): Related ideas about recursive models and recursive operators as smooth versions of logic operations

Related Work for parsing

- Resulting CVG Parser is related to previous work that extends PCFG parsers
- Klein and Manning (2003a) : manual feature engineering
- Petrov et al. (2006) : learning algorithm that splits and merges syntactic categories
- Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each category with a lexical item
- Hall and Klein (2012) combine several such annotation schemes in a factored parser.
- CVGs extend these ideas from discrete representations to richer continuous ones

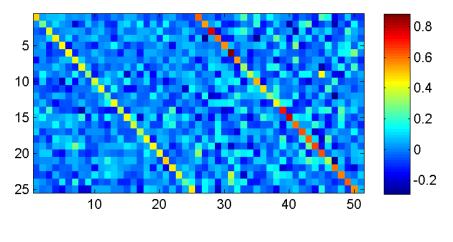
Experiments

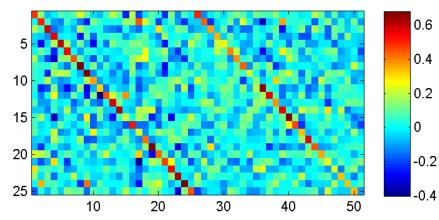
- Standard WSJ split, labeled F1
- Based on simple PCFG with fewer states
- Fast pruning of search space, few matrix-vector products
- 3.8% higher F1, 20% faster than Stanford factored parser

Parser	Test, All Sentences
Stanford PCFG, (Klein and Manning, 2003a)	85.5
Stanford Factored (Klein and Manning, 2003b)	86.6
Factored PCFGs (Hall and Klein, 2012)	89.4
Collins (Collins, 1997)	87.7
SSN (Henderson, 2004)	89.4
Berkeley Parser (Petrov and Klein, 2007)	90.1
CVG (RNN) (Socher et al., ACL 2013)	85.0
CVG (SU-RNN) (Socher et al., ACL 2013)	90.4
Charniak - Self Trained (McClosky et al. 2006)	91.0
Charniak - Self Trained-ReRanked (McClosky et al. 2006)	92.1

SU-RNN Analysis

Learns notion of soft head words





Analysis of resulting vector representations

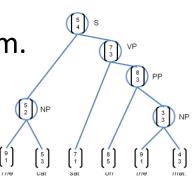
- All the figures are adjusted for seasonal variations
- 1. All the numbers are adjusted for seasonal fluctuations
- 2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn't comment on the offer

- 1. Harsco declined to say what country placed the order
- 2. Coastal wouldn't disclose the terms

Sales grew almost 7% to \$UNK m. from \$UNK m.

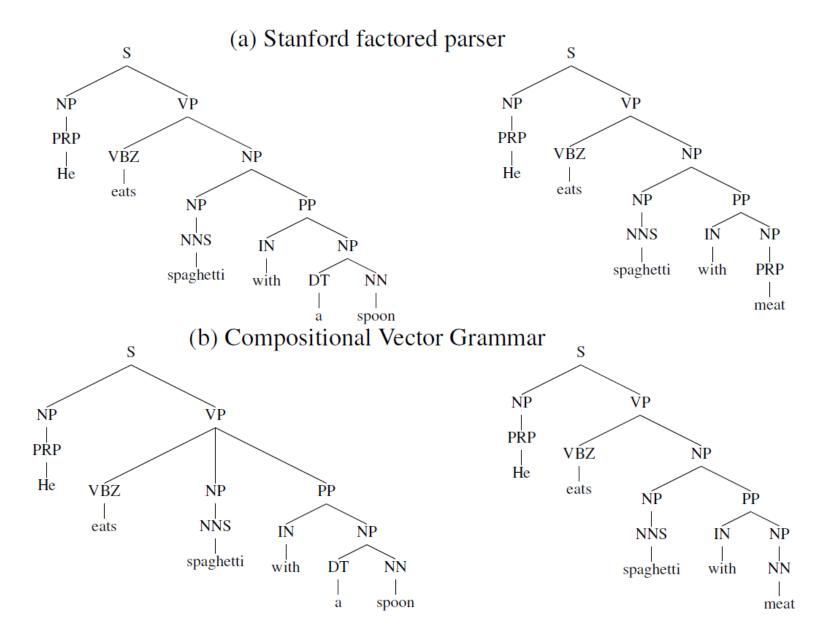
- 1. Sales rose more than 7% to \$94.9 m. from \$88.3 m.
- 2. Sales surged 40% to UNK b. yen from UNK b.



SU-RNN Analysis

- Can transfer semantic information from single related example
- Train sentences:
 - He eats spaghetti with a fork.
 - She eats spaghetti with pork.
- Test sentences
 - He eats spaghetti with a spoon.
 - He eats spaghetti with meat.

SU-RNN Analysis

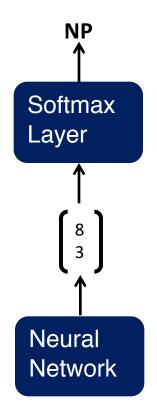


Labeling in Recursive Neural Networks

• We can use each node's representation as features for a *softmax* classifier:

$$p(c|p) = softmax(Sp)$$

• Training similar to model in part 1 with standard cross-entropy error + scores



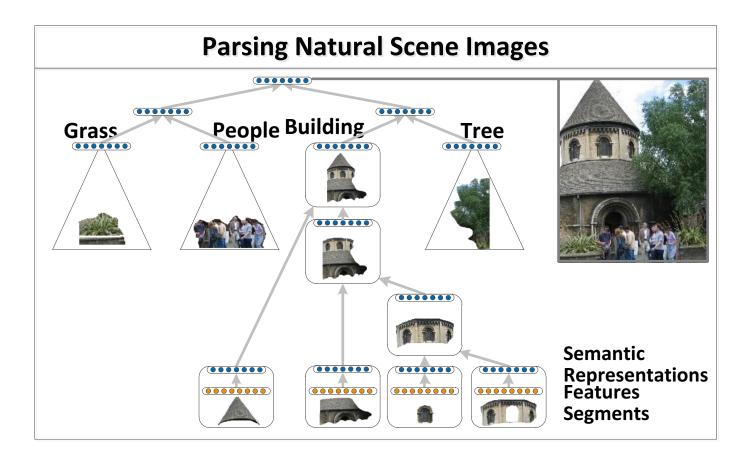
Scene Parsing

Similar principle of compositionality.

- The meaning of a scene image is also a function of smaller regions,
- how they combine as parts to form larger objects,
- and how the objects interact.

Algorithm for Parsing Images

Same Recursive Neural Network as for natural language parsing! (Socher et al. ICML 2011)



Multi-class segmentation

sky tree road grass water bldg mntn fg	j obj.
Method	Accuracy
Pixel CRF (Gould et al., ICCV 2009)	74.3
Classifier on superpixel features	75.9
Region-based energy (Gould et al., ICCV 2009)	76.4
Local labelling (Tighe & Lazebnik, ECCV 2010)	76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010)	77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010)	77.5
Recursive Neural Network	78.1

Stanford Background Dataset (Gould et al. 2009)

Lecture 1, Slide 50