CS224d: Deep NLP

Lecture 12: Midterm Review

Richard Socher

richard@metamind.io

Overview Today – Mostly open for questions!

- Linguistic Background: Levels and tasks
- Word Vectors
- Backprop
- RNNs

Overview of linguistic levels

Tasks: NER

Named Entity Recognition

The acquisition will beef up Markham, Ontario-based Magna 's North American U-ORGANIZATION B-MISC L-MISC U-LOCATION U-MISC car and truck seating business, allowing it to better compete with Johnson **B-ORGANIZATION** Controls Inc and Lear Around 2,000 of Indonesia Corp. I-ORGANIZATION L-ORGANIZATION **B-ORGANIZATION L-ORGANIZATION U-LOCATION** 's controversial Timor national car made by Kia Motor Corp of **B-ORGANIZATION I-ORGANIZATION L-ORGANIZATION** U-MISC arrived at Jakarta 's Tanjung South Korea Priok port on Thursday. **B-LOCATION L-LOCATION** U-LOCATION **B-LOCATION L-LOCATION**

Tasks: POS

Part of Speech Tagging

Acting on a tip from spelunkers two years ago, scientists in South Africa discovered NNP IN DT NN IN CD CD NNS JJ NNS IN NNP NNP VBD what the cavers had only dimly glimpsed through a crack in a limestone wall deep in WP DT NNS VBD BB RB -NONE-IN DT NN IN DT JJ NN RB IN the Rising Star Cave: lots and lots of old bones. The remains covered the earthen floor DT NNP NNP JJ NNS CC NNS IN JJ NNP DT JJ DT VBZ NN VBN beyond the narrow opening. This was, the scientists concluded, a large, dark chamber DT JJ NNP DT VBZ DT NNS -NONE-DT JJ JJ NN IN for the dead of a previously unidentified species of the early human lineage – Homo IN DT JJ IN DT RB NNS IN DT JJ JJ NNP NN NN naledi. NNP

Tasks: Sentiment analysis

Sentiment Analysis

the best way to hope for any chance of enjoying this film is by lowering your expectations .

negative

Machine Translation

Original	Translation
I am a man of yesterday's culture.	ich bin ein Mann der gestrigen Kultur . Explain
I grew up on examples of artists who lived poor and died in poverty, refused money for the sake of painting.	ich wuchs an Beispielen von Künstlern , die arm lebten und in Armut starben . Explain
This is the culture I'm for.	das ist die Kultur , für die ich bin . Explain
There is such a thing: an official for culture.	es gibt so etwas : ein Beamter für die Kultur Explain

INPLIT

PRO JECTION

w(t-2)

w(t-1)

w(t+1)

 For each word, we have an "input vector" v_w and an "output vector" v'_w

Skip-gram v.s. CBOW

All word2vec figures are from http://arxiv.org/pdf/1301.3781.pdf

word2vec as matrix factorization (conceptually)

Matrix factorization

$$\begin{bmatrix} M \end{bmatrix}_{n \times n} \approx \begin{bmatrix} A^{\top} \end{bmatrix}_{n \times k} \begin{bmatrix} B \end{bmatrix}_{k \times n}$$
$$M_{ij} \approx a_i^{\top} b_j$$

Imagine *M* is a matrix of counts for events co-occurring, but we only get to observe the co-occurrences one at a time. E.g.

$$M = \left[\begin{array}{rrrr} 1 & 0 & 4 \\ 0 & 0 & 2 \\ 1 & 3 & 0 \end{array} \right]$$

but we only see (1,1), (2,3), (3,2), (2,3), (1,3), ...

word2vec as matrix factorization (conceptually)

$$M_{ij}pprox a_i^ op b_j$$

- Whenever we see a pair (i, j) co-occur, we try to increasing $a_i^{\top} b_j$
- We also try to make all the other inner-products smaller to account for pairs never observed (or unobserved yet), by decreasing a[⊤]_{-i}b_j and a[⊤]_ib_{−j}
- Remember from the lecture that the word co-occurrence matrix usually captures the semantic meaning of a word? For word2vec models, roughly speaking, *M* is the windowed word co-occurrence matrix, *A* is the output vector matrix, and *B* is the input vector matrix.
- Why not just use one set of vectors? It's equivalent to A = B in our formulation here, but less constraints is usually easier for optimization.

	Fast training	Efficient usage of statistics	Quality affected by size of corpora	Captures complex patterns
Direct prediction (word2vec)	Scales with size of corpus	No	No*	Yes
GloVe	Yes	Yes	No	Yes

* Skip-gram and CBOW are qualitatively different when it comes to smaller corpora

Overview

- Neural Network Example
- Terminology
- Example 1:
 - Forward Pass
 - Backpropagation Using Chain Rule
 - What is delta? From Chain Rule to Modular Error Flow
- Example 2:
 - Forward Pass
 - Backpropagation

Neural Networks

• One of many different types of non-linear classifiers (i.e. leads to non-linear decision boundaries)

 Most common design involves the stacking of affine transformations followed by point-wise (element-wise) non-linearity

An example of a neural network

- This is a 4 layer neural network.
- 2 hidden-layer neural network.
- 2-10-10-3 neural network (complete architecture defn.)

Our first example

Layer 1 Layer 2 Layer 3

- This is a 3 layer neural network
- 1 hidden-layer neural network

Our first example: Terminology

Layer 2 Layer 3

Model Input

Model Output

Our first example: Terminology

Model Input

Layer 2 Layer 3

Activation Units

Our first example: Activation Unit Terminology

 $\begin{array}{l} z_1{}^{(2)} = \ W_{11}{}^{(1)}a_1{}^{(1)} + \ W_{12}{}^{(1)}a_2{}^{(1)} + \ W_{13}{}^{(1)}a_3{}^{(1)} + \ W_{14}{}^{(1)}a_4{}^{(1)} \\ a_1{}^{(2)} \ \text{is the 1^{st} activation unit of layer 2} \\ a_1{}^{(2)} = \pmb{\sigma}(z_1{}^{(2)}) \end{array}$

$$\begin{array}{l} z_1{}^{(1)} = x_1 \\ z_2{}^{(1)} = x_2 \\ z_3{}^{(1)} = x_3 \\ z_4{}^{(1)} = x_4 \end{array}$$

$$\begin{array}{l} a_1{}^{(1)} = \ z_1{}^{(1)} \\ a_2{}^{(1)} = \ z_2{}^{(1)} \\ a_3{}^{(1)} = \ z_3{}^{(1)} \\ a_4{}^{(1)} = \ z_4{}^{(1)} \end{array}$$

$$\begin{split} z_1^{(2)} &= \ W_{11}^{(1)} a_1^{(1)} + \ W_{12}^{(1)} a_2^{(1)} + \ W_{13}^{(1)} a_3^{(1)} + \ W_{14}^{(1)} a_4^{(1)} \\ z_2^{(2)} &= \ W_{21}^{(1)} a_1^{(1)} + \ W_{22}^{(1)} a_2^{(1)} + \ W_{23}^{(1)} a_3^{(1)} + \ W_{24}^{(1)} a_4^{(1)} \end{split}$$

 $z^{(2)} = W^{(1)}a^{(1)}$

Affine transformation

 $a^{(2)} = \boldsymbol{\sigma}(z^{(2)})$ Point-wise/Element-wise non-linearity

 $z^{(3)} = W^{(2)}a^{(2)}$ Affine transformation

$$a^{(3)} = z^{(3)}$$

 $s = a^{(3)}$

Let us try to calculate the error gradient wrt $W_{14}^{(1)}$ Thus we want to find:

 $\frac{\partial s}{\partial W_{14}^{(1)}}$

Let us try to calculate the error gradient wrt $W_{14}^{(1)}$ Thus we want to find:

$$\frac{\partial s}{\partial z_{1}^{(3)}} \frac{\partial z_{1}^{(3)}}{\partial a_{1}^{(2)}} \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} \frac{\partial z_{1}^{(2)}}{\partial W_{14}^{(1)}}$$

$$\frac{\partial z_{1}^{(3)}}{\partial a_{1}^{(2)}} \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} \frac{\partial z_{1}^{(2)}}{\partial W_{14}^{(1)}}$$

 $\frac{\partial (W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)})}{\partial a_1^{(2)}} \frac{\partial a_1^{(2)}}{\partial z_1^{(2)}} \frac{\partial z_1^{(2)}}{\partial W_{14}^{(1)}}$ ∂z

$$W_{11}^{(2)} \frac{\partial a_1^{(2)}}{\partial z_1^{(2)}} \frac{\partial z_1^{(2)}}{\partial W_{14}^{(1)}}$$

$$W_{11}^{(2)}\sigma'\left(z_1^{(2)}\right)\frac{\partial z_1^{(2)}}{\partial W_{14}^{(1)}}$$

$$W_{11}^{(2)}\sigma'\left(z_{1}^{(2)}\right)\frac{\partial(W_{11}^{(1)}a_{1}^{(1)}+W_{12}^{(1)}a_{2}^{(1)}+W_{13}^{(1)}a_{3}^{(1)}+W_{14}^{(1)}a_{4}^{(1)})}{\partial W_{14}^{(1)}}$$

 $W_{11}^{(2)}\sigma'(z_1^{(2)})a_4^{(1)}$ $δ_1^{(2)}$

Our first example: Backpropagation Observations

We got error gradient wrt $W_{14}^{(1)}$

Required:

- the signal forwarded by $W_{14}^{(1)} = a_4^{(1)}$
- the error propagating backwards $W_{11}^{(2)}$
- the local gradient $\sigma'(z_1^{(2)})$

Our first example: Backpropagation Observations

We tried to get error gradient wrt $W_{14}^{(1)}$

Required:

- the signal forwarded by $W_{14}^{(1)} = a_4^{(2)}$
- the error propagating backwards $W_{11}^{(2)}$
- the local gradient $\sigma'(z_1^{(2)})$

We can do this for all of $W^{(1)}$:

(as outer product)

$$\begin{array}{c} x_{1} \underbrace{z_{1}}_{(1)} \\ x_{2} \underbrace{z_{2}}_{(1)} \\ x_{2} \underbrace{z_{2}}_{(1)} \\ x_{3} \underbrace{z_{3}}_{(1)} \\ x_{4} \underbrace{z_{4}}_{(1)} \\ x_{4} \underbrace{z_{4}}_{(1)} \\ z_{2} \underbrace{z_{4}}_{(1)} \\ z_{2} \underbrace{z_{2}}_{(2)} \\ x_{4} \underbrace{z_{4}}_{(1)} \\ z_{2} \underbrace{z_{2}}_{(2)} \\ z_{2} \underbrace{z_{2}}_{(2)} \\ z_{2} \underbrace{z_{2}}_{(2)} \\ z_{2} \underbrace{z_{2}}_{(2)} \\ z_{2} \underbrace{z_{4}}_{(2)} \\ z_{4} \underbrace{z_{4}}_{(1)} \\ z_{4} \underbrace{z_{4}}_$$

$$\begin{pmatrix} \boldsymbol{\delta}_{1}^{(2)} a_{1}^{(1)} & \boldsymbol{\delta}_{1}^{(2)} a_{2}^{(1)} & \boldsymbol{\delta}_{1}^{(2)} a_{3}^{(1)} & \boldsymbol{\delta}_{1}^{(2)} a_{4}^{(1)} \\ \boldsymbol{\delta}_{2}^{(2)} a_{1}^{(1)} & \boldsymbol{\delta}_{2}^{(2)} a_{2}^{(1)} & \boldsymbol{\delta}_{2}^{(2)} a_{3}^{(1)} & \boldsymbol{\delta}_{2}^{(2)} a_{4}^{(1)} \end{pmatrix} \\ \begin{pmatrix} \boldsymbol{\delta}_{1}^{(2)} \\ \boldsymbol{\delta}_{2}^{(2)} \end{pmatrix} \begin{pmatrix} a_{1}^{(1)} a_{2}^{(1)} a_{3}^{(1)} & a_{4}^{(1)} \end{pmatrix}$$

Our first example: Let us define δ

 $\delta_1^{(2)}$ is the error flowing backwards at the same point where $z_1^{(2)}$ passed forwards. Thus it is simply the gradient of the error wrt $z_1^{(2)}$.

The chain rule of differentiation just boils down very simple patterns in error backpropagation:

- 1. An error x flowing backwards passes a neuron by getting amplified by the local gradient.
- 2. An error δ that needs to go through an affine transformation distributes itself in the way signal combined in forward pass.

Orange = Backprop. Green = Fwd. Pass

Gradient w.r.t $W^{(2)} = \mathbf{\delta}^{(3)} a^{(2)T}$

--Reusing the $\delta^{(3)}$ for downstream updates.

--Moving error vector across affine transformation simply requires multiplication with the transpose of forward matrix

--Notice that the dimensions will line up perfectly too!

--Moving error vector across point-wise non-linearity requires point-wise multiplication with local gradient of the non-linearity

Gradient w.r.t $W^{(1)} = \mathbf{\delta}^{(2)} a^{(1)T}$

Grad $W^{(3)} = \delta^{(4)} a^{(3)T}$

Grad $W^{(2)} = \delta^{(3)} a^{(2)T}$

 $\boldsymbol{\delta}^{(2)} = \boldsymbol{\sigma}^{\prime}(z^{(2)}) \boldsymbol{\Theta} W^{(2)T} \boldsymbol{\delta}^{(3)}$

Grad $W^{(1)} = \boldsymbol{\delta}^{(2)} a^{(1)T}$

Grad wrt input vector = $W^{(1)T} \delta^{(2)}$

CS224D Midterm Review

Ian Tenney

May 4, 2015

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Outline

Backpropagation (continued) RNN Structure RNN Backpropagation

Backprop on a DAG

Example: Gated Recurrent Units (GRUs) GRU Backpropagation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Outline

Backpropagation (continued)

RNN Structure RNN Backpropagation

Backprop on a DAG

Example: Gated Recurrent Units (GRUs) GRU Backpropagation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basic RNN Structure

- Basic RNN ("Elman network")
- You've seen this on Assignment #2 (and also in Lecture #5)

Basic RNN Structure

Two layers between input and prediction, plus hidden state

$$\begin{aligned} h^{(t)} &= \operatorname{sigmoid} \left(H h^{(t-1)} + W x^{(t)} + b_1 \right) \\ \hat{y}^{(t)} &= \operatorname{softmax} \left(U h^{(t)} + b_2 \right) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Unrolled RNN

- Helps to think about as "unrolled" network: distinct nodes for each timestep
- Just do backprop on this! Then combine shared gradients.

Backprop on RNN

Usual cross-entropy loss (k-class):

$$\bar{P}(y^{(t)} = j \mid x^{(t)}, \dots, x^{(1)}) = \hat{y}_j^{(t)}$$
$$J^{(t)}(\theta) = -\sum_{j=1}^k y_j^{(t)} \log \hat{y}_j^{(t)}$$

• Just do backprop on this! First timestep ($\tau = 1$):

$$\begin{array}{c} \frac{\partial J^{(t)}}{\partial U} & \frac{\partial J^{(t)}}{\partial b_2} \\ \\ \frac{\partial J^{(t)}}{\partial H}\Big|_{(t)} & \frac{\partial J^{(t)}}{\partial h^{(t)}} & \frac{\partial J^{(t)}}{\partial W}\Big|_{(t)} & \frac{\partial J^{(t)}}{\partial x^{(t)}} \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Backprop on RNN

First timestep (s = 0):

$$\begin{array}{c} \left. \frac{\partial J^{(t)}}{\partial U} & \frac{\partial J^{(t)}}{\partial b_2} \right. \\ \left. \frac{\partial J^{(t)}}{\partial H} \right|_{(t)} & \left. \frac{\partial J^{(t)}}{\partial h^{(t)}} & \left. \frac{\partial J^{(t)}}{\partial W} \right|_{(t)} & \left. \frac{\partial J^{(t)}}{\partial x^{(t)}} \right. \end{array}$$

• Back in time ($s = 1, 2, ..., \tau - 1$)

$$\frac{\partial J^{(t)}}{\partial H}\Big|_{(t-s)} \qquad \frac{\partial J^{(t)}}{\partial h^{(t-s)}} \qquad \frac{\partial J^{(t)}}{\partial W}\Big|_{(t-s)} \qquad \frac{\partial J^{(t)}}{\partial x^{(t-s)}}$$

Yuck, that's a lot of math!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Actually, it's not so bad.
- Solution: error vectors (δ)

Chain rule to the rescue!

•
$$a^{(t)} = Uh^{(t)} + b_2$$

- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- ▶ Gradient is *transpose* of Jacobian:

$$\nabla_a J = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}}\right)^T = \hat{y}^{(t)} - y^{(t)} = \delta^{(2)(t)} \quad \in \mathbb{R}^{k \times 1}$$

Now dimensions work out:

$$\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial b_2} = (\delta^{(2)(t)})^T I \quad \in \mathbb{R}^{(1 \times k) \cdot (k \times k)} = \mathbb{R}^{1 \times k}$$

Chain rule to the rescue!

•
$$a^{(t)} = Uh^{(t)} + b_2$$

- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- Gradient is transpose of Jacobian:

$$\nabla_a J = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}}\right)^T = \hat{y}^{(t)} - y^{(t)} = \delta^{(2)(t)} \quad \in \mathbb{R}^{k \times 1}$$

Now dimensions work out:

$$\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial b_2} = (\delta^{(2)(t)})^T I \quad \in \mathbb{R}^{(1 \times k) \cdot (k \times k)} = \mathbb{R}^{1 \times k}$$

Chain rule to the rescue!

•
$$a^{(t)} = Uh^{(t)} + b_2$$

- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- Gradient is transpose of Jacobian:

$$\nabla_a J = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}}\right)^T = \hat{y}^{(t)} - y^{(t)} = \delta^{(2)(t)} \quad \in \mathbb{R}^{k \times 1}$$

Now dimensions work out:

$$\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial b_2} = (\delta^{(2)(t)})^T I \quad \in \mathbb{R}^{(1 \times k) \cdot (k \times k)} = \mathbb{R}^{1 \times k}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Chain rule to the rescue!

•
$$a^{(t)} = Uh^{(t)} + b_2$$

- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- Matrix dimensions get weird:

$$\frac{\partial a^{(t)}}{\partial U} \in \mathbb{R}^{k \times (k \times D_h)}$$

But we don't need fancy tensors:

$$\nabla_U J^{(t)} = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial U}\right)^T = \delta^{(2)(t)} (h^{(t)})^T \quad \in \mathbb{R}^{k \times D_h}$$

NumPy: self.grads.U += outer(d2, hs[t])

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Chain rule to the rescue!
- $a^{(t)} = Uh^{(t)} + b_2$
- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- Matrix dimensions get weird:

$$\frac{\partial a^{(t)}}{\partial U} \in \mathbb{R}^{k \times (k \times D_h)}$$

But we don't need fancy tensors:

$$\nabla_U J^{(t)} = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial U}\right)^T = \delta^{(2)(t)} (h^{(t)})^T \quad \in \mathbb{R}^{k \times D_h}$$

NumPy: self.grads.U += outer(d2, hs[t])

Really just need one simple pattern:

•
$$z^{(t)} = Hh^{(t-1)} + Wx^{(t)} + b_1$$

- ► $h^{(t)} = f(z^{(t)})$
- Compute error delta (s = 0, 1, 2, ...):
 - From top: $\delta^{(t)} = \left[h^{(t)} \circ (1 h^{(t)})\right] \circ U^T \delta^{(2)(t)}$
 - ▶ Deeper: $\delta^{(t-s)} = \left[h^{(t-s)} \circ (1 h^{(t-s)})\right] \circ H^T \delta^{(t-s+1)}$

These are just chain-rule expansions!

$$\frac{\partial J^{(t)}}{\partial z^{(t)}} = \frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}} = (\delta^{(t)})^T$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Really just need one simple pattern:

•
$$z^{(t)} = Hh^{(t-1)} + Wx^{(t)} + b_1$$

- $\blacktriangleright \ h^{(t)} = f(z^{(t)})$
- Compute error delta (s = 0, 1, 2, ...):
 - From top: $\delta^{(t)} = \left[h^{(t)} \circ (1 h^{(t)})\right] \circ U^T \delta^{(2)(t)}$
 - ▶ Deeper: $\delta^{(t-s)} = \left[h^{(t-s)} \circ (1 h^{(t-s)})\right] \circ H^T \delta^{(t-s+1)}$
- These are just chain-rule expansions!

$$\frac{\partial J^{(t)}}{\partial z^{(t)}} = \frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}} = (\delta^{(t)})^T$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

These are just chain-rule expansions!

$$\frac{\partial J^{(t)}}{\partial b_1}\Big|_{(t)} = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}}\right) \cdot \frac{\partial z^{(t)}}{\partial b_1} = (\delta^{(t)})^T \frac{\partial z^{(t)}}{\partial b_1}$$
$$\frac{\partial J^{(t)}}{\partial H}\Big|_{(t)} = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}}\right) \cdot \frac{\partial z^{(t)}}{\partial H} = (\delta^{(t)})^T \frac{\partial z^{(t)}}{\partial H}$$
$$\frac{\partial J^{(t)}}{\partial z^{(t-1)}} = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}}\right) \cdot \frac{\partial z^{(t)}}{\partial h^{(t-1)}} = (\delta^{(t)})^T \frac{\partial z^{(t)}}{\partial z^{(t-1)}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

And there's shortcuts for them too:

$$\left(\frac{\partial J^{(t)}}{\partial b_1} \Big|_{(t)} \right)^T = \delta^{(t)}$$

$$\left(\frac{\partial J^{(t)}}{\partial H} \Big|_{(t)} \right)^T = \delta^{(t)} \cdot (h^{(t-1)})^T$$

$$\left(\frac{\partial J^{(t)}}{\partial z^{(t-1)}} \right)^T = \left[h^{(t-1)} \circ (1 - h^{(t-1)}) \right] \circ H^T \delta^{(t)} = \delta^{(t-1)}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Outline

Backpropagation (continued) RNN Structure RNN Backpropagation

Backprop on a DAG

Example: Gated Recurrent Units (GRUs) GRU Backpropagation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation

- Gated units with "reset" and "output" gates
- Reduce problems with vanishing gradients

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et al. 2014)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Intuition

- Gates z_i and r_i for each hidden layer neuron
- $\blacktriangleright z_i, r_i \in [0,1]$
- \tilde{h} as "candidate" hidden layer
- \tilde{h} , z, r all depend on on $x^{(t)}$, $h^{(t-1)}$
- $h^{(t)}$ depends on $h^{(t-1)}$ mixed with $\tilde{h}^{(t)}$

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et al. 2014)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Equations

$$\begin{aligned} \mathbf{r} & z^{(t)} = \sigma \left(W_z x^{(t)} + U_z h^{(t-1)} \right) \\ \mathbf{r}^{(t)} &= \sigma \left(W_r x^{(t)} + U_r h^{(t-1)} \right) \\ \mathbf{\tilde{h}}^{(t)} &= \tanh \left(W x^{(t)} + r^{(t)} \circ U h^{(t-1)} \right) \\ \mathbf{r}^{(t)} &= z^{(t)} \circ h^{(t-1)} + (1 - z^{(t)}) \circ \tilde{h}^{(t)} \end{aligned}$$

Optionally can have biases; omitted for clarity.

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et al. 2014)

Same eqs. as Lecture 8, subscripts/superscripts as in Assignment #2.

Backpropagation

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

• Start with
$$\delta^{(t)} = \left(\frac{\partial J}{\partial h^{(t)}}\right)^T \in \mathbb{R}^d$$

$$h^{(t)} = z^{(t)} \circ h^{(t-1)} + (1 - z^{(t)}) \circ \tilde{h}^{(t)}$$

Expand chain rule into sum (a.k.a. product rule):

$$\begin{array}{ll} \displaystyle \frac{\partial J}{\partial x^{(t)}} & = & \displaystyle \frac{\partial J}{\partial h^{(t)}} \cdot \left[z^{(t)} \circ \frac{\partial h^{(t-1)}}{\partial x^{(t)}} + \frac{\partial z^{(t)}}{\partial x^{(t)}} \circ h^{(t-1)} \right] \\ & + & \displaystyle \frac{\partial J}{\partial h^{(t)}} \cdot \left[(1 - z^{(t)}) \circ \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} + \frac{\partial (1 - z^{(t)})}{\partial x^{(t)}} \circ \tilde{h}^{(t)} \right] \end{array}$$

It gets (a little) better

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

• Drop terms that don't depend on $x^{(t)}$:

$$\begin{aligned} \frac{\partial J}{\partial x^{(t)}} &= \frac{\partial J}{\partial h^{(t)}} \cdot \left[z^{(t)} \circ \frac{\partial h^{(t-1)}}{\partial x^{(t)}} + \frac{\partial z^{(t)}}{\partial x^{(t)}} \circ h^{(t-1)} \right] \\ &+ \frac{\partial J}{\partial h^{(t)}} \cdot \left[(1 - z^{(t)}) \circ \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} + \frac{\partial (1 - z^{(t)})}{\partial x^{(t)}} \circ \tilde{h}^{(t)} \right] \\ &= \frac{\partial J}{\partial h^{(t)}} \cdot \left[\frac{\partial z^{(t)}}{\partial x^{(t)}} \circ h^{(t-1)} + (1 - z^{(t)}) \circ \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} \right] \\ &- \frac{\partial J}{\partial h^{(t)}} \frac{\partial z^{(t)}}{\partial x^{(t)}} \circ \tilde{h}^{(t)} \end{aligned}$$

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

- Now we really just need to compute two things:
- Output gate:

$$\frac{\partial z^{(t)}}{\partial x^{(t)}} = z^{(t)} \circ (1 - z^{(t)}) \circ W_z$$

• Candidate \tilde{h} :

$$\frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} = (1 - (\tilde{h}^{(t)})^2) \circ W$$
$$+ (1 - (\tilde{h}^{(t)})^2) \circ \frac{\partial r^{(t)}}{\partial x^{(t)}} \circ Uh^{(t-1)}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- ▶ Ok, I lied there's a third.
- Don't forget to check all paths!

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

- Now we really just need to compute two things:
- Output gate:

$$\frac{\partial z^{(t)}}{\partial x^{(t)}} = z^{(t)} \circ (1 - z^{(t)}) \circ W_z$$

Candidate *h*:

$$\begin{aligned} \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} &= (1 - (\tilde{h}^{(t)})^2) \circ W \\ &+ (1 - (\tilde{h}^{(t)})^2) \circ \frac{\partial r^{(t)}}{\partial x^{(t)}} \circ U h^{(t-1)} \end{aligned}$$

- Ok, I lied there's a third.
- Don't forget to check all paths!

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

- Now we really just need to compute two things:
- Output gate:

$$\frac{\partial z^{(t)}}{\partial x^{(t)}} = z^{(t)} \circ (1 - z^{(t)}) \circ W_z$$

Candidate *h*:

$$\begin{aligned} \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} &= (1 - (\tilde{h}^{(t)})^2) \circ W \\ &+ (1 - (\tilde{h}^{(t)})^2) \circ \frac{\partial r^{(t)}}{\partial x^{(t)}} \circ U h^{(t-1)} \end{aligned}$$

- Ok, I lied there's a third.
- Don't forget to check all paths!

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

Last one:

$$\frac{\partial r^{(t)}}{\partial x^{(t)}} = r^{(t)} \circ (1 - r^{(t)}) \circ W_r$$

- Now we can just add things up!
- (I'll spare you the pain...)

Whew.

- Why three derivatives?
- Three arrows from $x^{(t)}$ to distinct nodes
- Four paths total $\left(\frac{\partial z^{(t)}}{\partial x^{(t)}}\right)$ appears twice)

Whew.

- GRUs are complicated
- All the pieces are simple
- Same matrix gradients that you've seen before

Summary

- Check your dimensions!
- Write error vectors δ ; just parentheses around chain rule

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Combine simple operations to make complex network
 - Matrix-vector product
 - Activation functions (tanh, sigmoid, softmax)