
CS224d:	Deep	NLP

Lecture	12:
Midterm	Review

Richard	Socher
richard@metamind.io

Overview	Today	– Mostly	open	for	questions!

• Linguistic	Background:	Levels	and	tasks

• Word	Vectors

• Backprop

• RNNs

5/5/16Richard	SocherLecture	1,	Slide	 2

Overview	of	linguistic	levels

5/5/16Richard	SocherLecture	1,	Slide	 3

Tasks:	NER

5/5/16Richard	SocherLecture	1,	Slide	 4

Tasks:	POS

5/5/16Richard	SocherLecture	1,	Slide	 5

Tasks:	Sentiment	analysis

5/5/16Richard	SocherLecture	1,	Slide	 6

Machine	Translation

5/5/16Richard	SocherLecture	1,	Slide	 7

Skip-gram

I Task: given a center word, predict its
context words

I For each word, we have an “input vector”
vw and an “output vector” v 0w

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R � 2

word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+

vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

Skip-gram v.s. CBOW

All word2vec figures are from http://arxiv.org/pdf/1301.3781.pdf

Skip-gram CBOW

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R � 2

word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+

vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R � 2

word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+

vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

Task Center word ! Context Context ! Center word
r vwi f (vwi�C , · · · , vwi�1 , vwi+1 , · · · , vwi+C)

word2vec as matrix factorization (conceptually)

I Matrix factorization
2

4 M

3

5

n⇥n

⇡

2

4
.

A>

.

3

5

n⇥k

⇥
. B .

⇤
k⇥n

Mij ⇡ a>i bj

I Imagine M is a matrix of counts for events co-occurring, but
we only get to observe the co-occurrences one at a time. E.g.

M =

2

4
1 0 4
0 0 2
1 3 0

3

5

but we only see
(1,1), (2,3), (3,2), (2,3), (1,3), . . .

word2vec as matrix factorization (conceptually)

Mij ⇡ a>i bj

I Whenever we see a pair (i , j) co-occur, we try to increasing
a>i bj

I We also try to make all the other inner-products smaller to
account for pairs never observed (or unobserved yet), by
decreasing a>¬ibj and a>i b¬j

I Remember from the lecture that the word co-occurrence
matrix usually captures the semantic meaning of a word?
For word2vec models, roughly speaking, M is the windowed
word co-occurrence matrix, A is the output vector matrix, and
B is the input vector matrix.

I Why not just use one set of vectors? It’s equivalent to A = B
in our formulation here, but less constraints is usually easier
for optimization.

GloVe v.s. word2vec

* Skip-gram and CBOW are qualitatively di↵erent when it comes to smaller corpora

Fast
training

E�cient
usage of
statistics

Quality
a↵ected
by size of
corpora

Captures
complex
patterns

Direct
prediction
(word2vec)

Scales
with size
of corpus

No No* Yes

GloVe
Yes Yes No Yes

Overview
• Neural Network Example
• Terminology
• Example 1:

•  Forward Pass
•  Backpropagation Using Chain Rule
•  What is delta? From Chain Rule to Modular Error Flow

• Example 2:
•  Forward Pass
•  Backpropagation

CS224D: Deep Learning for NLP 2

Neural Networks
• One of many different types of non-linear classifiers (i.e.
leads to non-linear decision boundaries)

• Most common design involves the stacking of affine
transformations followed by point-wise (element-wise)
non-linearity

CS224D: Deep Learning for NLP 3

An example of a neural network

• This is a 4 layer neural network.
•  2 hidden-layer neural network.
•  2-10-10-3 neural network (complete architecture defn.)

CS224D: Deep Learning for NLP 4

Our first example

• This is a 3 layer neural network
•  1 hidden-layer neural network

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

CS224D: Deep Learning for NLP 5

Layer 1 Layer 2 Layer 3

Our first example:
Terminology

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

CS224D: Deep Learning for NLP 6

Model Input Model Output

Layer 1 Layer 2 Layer 3

Our first example:
Terminology

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

CS224D: Deep Learning for NLP 7

Model Input Model Output

Activation Units

Layer 1 Layer 2 Layer 3

Our first example:
Activation Unit Terminology

σ
z1

(2) a1
(2)

CS224D: Deep Learning for NLP 8

z1
(2) a1

(2)
σ+

We draw this This is actually what’s going on

z1
(2) = W11

(1)a1
(1) + W12

(1)a2
(1) + W13

(1)a3
(1) + W14

(1)a4
(1)

a1
(2) is the 1st activation unit of layer 2

a1
(2) = σ(z1

(2))

Our first example:
Forward Pass

CS224D: Deep Learning for NLP 9

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

z1
(1) = x1

z2
(1) = x2

z3
(1) = x3

z4
(1) = x4

Our first example:
Forward Pass

CS224D: Deep Learning for NLP 10

a1
(1) = z1

(1)

a2
(1) = z2

(1)

a3
(1) = z3

(1)

a4
(1) = z4

(1)

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

Our first example:
Forward Pass

CS224D: Deep Learning for NLP 11

z1
(2) = W11

(1)a1
(1) + W12

(1)a2
(1) + W13

(1)a3
(1) + W14

(1)a4
(1)

z2
(2) = W21

(1)a1
(1) + W22

(1)a2
(1) + W23

(1)a3
(1) + W24

(1)a4
(1)

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

Our first example:
Forward Pass

CS224D: Deep Learning for NLP 12

W11
(1) W12

(1) W13
(1) W14

(1)
W21

(1) W22
(1) W23

(1) W24
(1)

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

a1
(1)

a2
(1)

a3
(1)

a4
(1)

z1
(2)

z2
(2)

=

W(1) z(2) a(1)

Our first example:
Forward Pass

CS224D: Deep Learning for NLP 13

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

z(2) =W(1)a(1)

Affine transformation

Our first example:
Forward Pass

CS224D: Deep Learning for NLP 14

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

a(2) = σ(z(2))
Point-wise/Element-wise non-linearity

Our first example:
Forward Pass

CS224D: Deep Learning for NLP 15

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

z(3) = W(2)a(2)

Affine transformation

Our first example:
Forward Pass

CS224D: Deep Learning for NLP 16

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

a(3) = z(3)

s = a(3)

Our first example:
Backpropagation
using chain rule

CS224D: Deep Learning for NLP 17

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

Let us try to calculate the error gradient wrt W14
(1)

Thus we want to find:

Our first example:
Backpropagation
using chain rule

CS224D: Deep Learning for NLP 18

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

Let us try to calculate the error gradient wrt W14

(1)

Thus we want to find:

Our first example:
Backpropagation
using chain rule

CS224D: Deep Learning for NLP 19

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

This is simply 1

Our first example:
Backpropagation
using chain rule

CS224D: Deep Learning for NLP 20

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

!(!!!(!)!!! + !!!"(!)!!(!))
!!!

(!)
!!!(!)

!!!
(!)

!!!(!)

!!!"
(!)!

!!!(!)

!!!
(!)
!!!(!)

!!!
(!)

!!!(!)

!!!"
(!)!

Our first example:
Backpropagation
using chain rule

CS224D: Deep Learning for NLP 21

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

Our first example:
Backpropagation
using chain rule

CS224D: Deep Learning for NLP 22

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

!!!! !′ !!!
!!!(!)

!!!"
(!)!

Our first example:
Backpropagation
using chain rule

CS224D: Deep Learning for NLP 23

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

Our first example:
Backpropagation
using chain rule

CS224D: Deep Learning for NLP 24

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

!!!! !′ !!! !!(!)!

δ1
(2)

Our first example:
Backpropagation
Observations

CS224D: Deep Learning for NLP 25

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

We got error
gradient wrt W14

(1)

Required:
•  the signal forwarded by W14

(1) = a4
(1)

•  the error propagating backwards W11
(2)

•  the local gradient σ’(z1
(2))

Our first example:
Backpropagation
Observations

CS224D: Deep Learning for NLP 26

1

1

1

1

1

x1

x2

x3

x4

z1
(1)

z2
(1)

z3
(1)

z4
(1)

z1
(2)

z2
(2)

a1
(1)

a4
(1)

a1
(2)

a2
(2)

z1
(3) a1

(3) s

We tried to get error
gradient wrt W14

(1)

Required:
•  the signal forwarded by W14

(1) = a4
(1)

•  the error propagating backwards W11
(2)

•  the local gradient σ’(z1
(2))

We can do this for
all of W(1):

(as outer product)

δ1
(2)a1

(1) δ1
(2)a2

(1) δ1
(2)a3

(1) δ1
(2)a4

(1)
δ2

(2)a1
(1) δ2

(2)a2
(1) δ2

(2)a3
(1) δ2

(2)a4
(1)

δ1
(2)

δ2
(2)

a1
(1) a2

(1 a3
(1) a4

(1)

Our first example:
Let us define δ

CS224D: Deep Learning for NLP 27

z1
(2) a1

(2)
σ+

Recall that this is forward pass

δ1
(2)

σ+

This is the backpropagation

δ1
(2) is the error flowing backwards at the same

point where z1
(2) passed forwards. Thus it is simply the gradient

of the error wrt z1
(2).

Our first example:
Backpropagation using error vectors

CS224D: Deep Learning for NLP 28

The chain rule of differentiation just boils
down very simple patterns in error
backpropagation:

1.  An error x flowing backwards passes a

neuron by getting amplified by the local
gradient.

2.  An error δ that needs to go through an
affine transformation distributes itself in
the way signal combined in forward pass.

σ
x δ = σ’(z)x

+
δ
z

a1w1

a2w2

a3w3

δw1

δw2

δw3

Orange = Backprop.
Green = Fwd. Pass

Our first example:
Backpropagation using error vectors

CS224D: Deep Learning for NLP 29

1 σ 1
z(1) a(1)

 W(1)
z(2) a(2) W(2)

z(3) s

Our first example:
Backpropagation using error vectors

CS224D: Deep Learning for NLP 30

1 σ 1
z(1) a(1)

 W(1)
z(2) a(2) W(2)

z(3) s

δ(3)

This is for softmax

Our first example:
Backpropagation using error vectors

CS224D: Deep Learning for NLP 31

1 σ 1
z(1) a(1)

 W(1)
z(2) a(2) W(2)

z(3) s

δ(3)

Gradient w.r.t W(2) = δ(3)a(2)T

Our first example:
Backpropagation using error vectors

CS224D: Deep Learning for NLP 32

1 σ 1
z(1) a(1)

 W(1)
z(2) a(2) W(2)

z(3) s

δ(3) W(2)T δ(3)

--Reusing the δ(3) for downstream updates.
--Moving error vector across affine transformation simply requires multiplication with
the transpose of forward matrix
--Notice that the dimensions will line up perfectly too!

Our first example:
Backpropagation using error vectors

CS224D: Deep Learning for NLP 33

1 σ 1
z(1) a(1)

 W(1)
z(2) a(2) W(2)

z(3) s

W(2)T δ(3) σ’(z(2))!W(2)T δ(3)

= δ(2)

--Moving error vector across point-wise non-linearity requires point-wise
multiplication with local gradient of the non-linearity

Our first example:
Backpropagation using error vectors

CS224D: Deep Learning for NLP 34

1 σ 1
z(1) a(1)

 W(1)
z(2) a(2) W(2)

z(3) s

δ(2)

Gradient w.r.t W(1) = δ(2)a(1)T

W(1)T δ(2)

Our second example (4-layer network):
Backpropagation using error vectors

CS224D: Deep Learning for NLP 35

σ σ 1
z(1) a(1) W(1) z(2) a(2) W(2) soft

max
a(3) W(3) z(3) z(4) yp

Our second example (4-layer network):
Backpropagation using error vectors

CS224D: Deep Learning for NLP 36

σ σ 1
z(1) a(1) W(1) z(2) a(2) W(2) soft

max
a(3) W(3) z(3) z(4) yp

yp– y = δ(4)

Our second example (4-layer network):
Backpropagation using error vectors

CS224D: Deep Learning for NLP 37

σ σ 1
z(1) a(1) W(1) z(2) a(2) W(2) soft

max
a(3) W(3) z(3) z(4) yp

Grad W(3) = δ(4)a(3)T

W(3)Tδ(4)

δ(4)

Our second example (4-layer network):
Backpropagation using error vectors

CS224D: Deep Learning for NLP 38

σ σ 1
z(1) a(1) W(1) z(2) a(2) W(2) soft

max
a(3) W(3) z(3) z(4) yp

W(3)Tδ(4) δ(3)= σ’(z(3))!W(3)Tδ(4)

Our second example (4-layer network):
Backpropagation using error vectors

CS224D: Deep Learning for NLP 39

σ σ 1
z(1) a(1) W(1) z(2) a(2) W(2) soft

max
a(3) W(3) z(3) z(4) yp

Grad W(2) = δ(3)a(2)T

δ(3) W(2)Tδ(3)

Our second example (4-layer network):
Backpropagation using error vectors

CS224D: Deep Learning for NLP 40

σ σ 1
z(1) a(1) W(1) z(2) a(2) W(2) soft

max
a(3) W(3) z(3) z(4) yp

W(2)Tδ(3)

δ(2)= σ’(z(2))!W(2)Tδ(3)

Our second example (4-layer network):
Backpropagation using error vectors

CS224D: Deep Learning for NLP 41

σ σ 1
z(1) a(1) W(1) z(2) a(2) W(2) soft

max
a(3) W(3) z(3) z(4) yp

δ(2) W(1)Tδ(2)

Grad W(1) = δ(2)a(1)T

Our second example (4-layer network):
Backpropagation using error vectors

CS224D: Deep Learning for NLP 42

σ σ 1
z(1) a(1) W(1) z(2) a(2) W(2) soft

max
a(3) W(3) z(3) z(4) yp

W(1)Tδ(2)

Grad wrt input vector = W(1)Tδ(2)

W(1)Tδ(2)

CS224D Midterm Review

Ian Tenney

May 4, 2015

Outline

Backpropagation (continued)
RNN Structure
RNN Backpropagation

Backprop on a DAG
Example: Gated Recurrent Units (GRUs)
GRU Backpropagation

Outline

Backpropagation (continued)
RNN Structure
RNN Backpropagation

Backprop on a DAG
Example: Gated Recurrent Units (GRUs)
GRU Backpropagation

Basic RNN Structure

x(t)

h(t)h(t�1)

ŷ(t)

...

I Basic RNN ("Elman network")
I You’ve seen this on Assignment #2 (and also in Lecture #5)

Basic RNN Structure

x(t)

h(t)h(t�1)

ŷ(t)

...

I Two layers between input and prediction, plus hidden state

h(t) = sigmoid
⇣
Hh(t�1)

+Wx(t) + b1

⌘

ŷ(t) = softmax
⇣
Uh(t) + b2

⌘

Unrolled RNN

x(t)

h(t)

ŷ(t)

...h(t�1)

x(t�1)

ŷ(t�1)

h(t�2)

x(t�2)

ŷ(t�2)

h(t�3)

I Helps to think about as “unrolled” network: distinct nodes
for each timestep

I Just do backprop on this! Then combine shared gradients.

Backprop on RNN

I Usual cross-entropy loss (k-class):

¯P (y(t) = j | x(t), . . . , x(1)) = ŷ
(t)
j

J (t)
(✓) = �

kX

j=1

y
(t)
j

log ŷ
(t)
j

I Just do backprop on this! First timestep (⌧ = 1):

@J (t)

@U

@J (t)

@b2

@J (t)

@H

����
(t)

@J (t)

@h(t)
@J (t)

@W

����
(t)

@J (t)

@x(t)

Backprop on RNN

I First timestep (s = 0):

@J (t)

@U

@J (t)

@b2

@J (t)

@H

����
(t)

@J (t)

@h(t)
@J (t)

@W

����
(t)

@J (t)

@x(t)

I Back in time (s = 1, 2, . . . , ⌧ � 1)

@J (t)

@H

����
(t�s)

@J (t)

@h(t�s)

@J (t)

@W

����
(t�s)

@J (t)

@x(t�s)

Backprop on RNN

Yuck, that’s a lot of math!
I Actually, it’s not so bad.
I Solution: error vectors (�)

Making sense of the madness

I Chain rule to the rescue!
I a(t) = Uh(t) + b2

I ŷ(t) = softmax(a(t))
I Gradient is transpose of Jacobian:

r
a

J =

@J (t)

@a(t)

!
T

= ŷ(t) � y(t) = �(2)(t) 2 Rk⇥1

I Now dimensions work out:

@J (t)

@a(t)
· @a

(t)

@b2
= (�(2)(t))T I 2 R(1⇥k)·(k⇥k)

= R1⇥k

Making sense of the madness

I Chain rule to the rescue!
I a(t) = Uh(t) + b2

I ŷ(t) = softmax(a(t))
I Gradient is transpose of Jacobian:

r
a

J =

@J (t)

@a(t)

!
T

= ŷ(t) � y(t) = �(2)(t) 2 Rk⇥1

I Now dimensions work out:

@J (t)

@a(t)
· @a

(t)

@b2
= (�(2)(t))T I 2 R(1⇥k)·(k⇥k)

= R1⇥k

Making sense of the madness

I Chain rule to the rescue!
I a(t) = Uh(t) + b2

I ŷ(t) = softmax(a(t))
I Gradient is transpose of Jacobian:

r
a

J =

@J (t)

@a(t)

!
T

= ŷ(t) � y(t) = �(2)(t) 2 Rk⇥1

I Now dimensions work out:

@J (t)

@a(t)
· @a

(t)

@b2
= (�(2)(t))T I 2 R(1⇥k)·(k⇥k)

= R1⇥k

Making sense of the madness

I Chain rule to the rescue!
I a(t) = Uh(t) + b2

I ŷ(t) = softmax(a(t))
I Matrix dimensions get weird:

@a(t)

@U
2 Rk⇥(k⇥Dh)

I But we don’t need fancy tensors:

r
U

J (t)
=

@J (t)

@a(t)
· @a

(t)

@U

!
T

= �(2)(t)(h(t))T 2 Rk⇥Dh

I NumPy: self.grads.U += outer(d2, hs[t])

Making sense of the madness

I Chain rule to the rescue!
I a(t) = Uh(t) + b2

I ŷ(t) = softmax(a(t))
I Matrix dimensions get weird:

@a(t)

@U
2 Rk⇥(k⇥Dh)

I But we don’t need fancy tensors:

r
U

J (t)
=

@J (t)

@a(t)
· @a

(t)

@U

!
T

= �(2)(t)(h(t))T 2 Rk⇥Dh

I NumPy: self.grads.U += outer(d2, hs[t])

Going deeper

I Really just need one simple pattern:
I z(t) = Hh(t�1)

+Wx(t) + b1

I h(t) = f(z(t))

I Compute error delta (s = 0, 1, 2, . . .):
I From top: �(t) =

⇥
h(t) � (1� h(t)

)

⇤
� UT �(2)(t)

I Deeper: �(t�s)
=

⇥
h(t�s) � (1� h(t�s)

)

⇤
�HT �(t�s+1)

I These are just chain-rule expansions!

@J (t)

@z(t)
=

@J (t)

@a(t)
· @a

(t)

@h(t)
· @h

(t)

@z(t)
= (�(t))T

Going deeper

I Really just need one simple pattern:
I z(t) = Hh(t�1)

+Wx(t) + b1

I h(t) = f(z(t))

I Compute error delta (s = 0, 1, 2, . . .):
I From top: �(t) =

⇥
h(t) � (1� h(t)

)

⇤
� UT �(2)(t)

I Deeper: �(t�s)
=

⇥
h(t�s) � (1� h(t�s)

)

⇤
�HT �(t�s+1)

I These are just chain-rule expansions!

@J (t)

@z(t)
=

@J (t)

@a(t)
· @a

(t)

@h(t)
· @h

(t)

@z(t)
= (�(t))T

Going deeper

I These are just chain-rule expansions!

@J (t)

@b1

����
(t)

=

@J (t)

@a(t)
· @a

(t)

@h(t)
· @h

(t)

@z(t)

!
· @z

(t)

@b1
= (�(t))T

@z(t)

@b1

@J (t)

@H

����
(t)

=

@J (t)

@a(t)
· @a

(t)

@h(t)
· @h

(t)

@z(t)

!
· @z

(t)

@H
= (�(t))T

@z(t)

@H

@J (t)

@z(t�1)
=

@J (t)

@a(t)
· @a

(t)

@h(t)
· @h

(t)

@z(t)

!
· @z(t)

@h(t�1)
= (�(t))T

@z(t)

@z(t�1)

Going deeper

I And there’s shortcuts for them too:

@J (t)

@b1

����
(t)

!
T

= �(t)

@J (t)

@H

����
(t)

!
T

= �(t) · (h(t�1)
)

T

@J (t)

@z(t�1)

!
T

=

h
h(t�1) � (1� h(t�1)

)

i
�HT �(t) = �(t�1)

Outline

Backpropagation (continued)
RNN Structure
RNN Backpropagation

Backprop on a DAG
Example: Gated Recurrent Units (GRUs)
GRU Backpropagation

Motivation

I Gated units with “reset” and “output” gates
I Reduce problems with vanishing gradients

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et
al. 2014)

Intuition
I Gates z

i

and r
i

for each hidden layer neuron
I z

i

, r
i

2 [0, 1]

I ˜h as “candidate” hidden layer
I ˜h, z, r all depend on on x(t), h(t�1)

I h(t) depends on h(t�1) mixed with ˜h(t)

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et
al. 2014)

Equations
I z(t) = �

�
W

z

x(t) + U
z

h(t�1)
�

I r(t) = �
�
W

r

x(t) + U
r

h(t�1)
�

I ˜h(t) = tanh
�
Wx(t) + r(t) � Uh(t�1)

�

I h(t) = z(t) � h(t�1)
+ (1� z(t)) � ˜h(t)

I Optionally can have biases; omitted for clarity.

Figure : You are likely to be eaten by a GRU. (Figure from Chung, et
al. 2014)

Same eqs. as Lecture 8, subscripts/superscripts as in Assignment #2.

Backpropagation

Multi-path to compute @J

@x

(t)

I Start with �(t) =
⇣

@J

@h

(t)

⌘
T

2 Rd

I h(t) = z(t) � h(t�1)
+ (1� z(t)) � ˜h(t)

I Expand chain rule into sum (a.k.a. product rule):

@J

@x(t)
=

@J

@h(t)
·
"
z(t) � @h(t�1)

@x(t)
+

@z(t)

@x(t)
� h(t�1)

#

+

@J

@h(t)
·
"
(1� z(t)) � @˜h(t)

@x(t)
+

@(1� z(t))

@x(t)
� ˜h(t)

#

It gets (a little) better

Multi-path to compute @J

@x

(t)

I Drop terms that don’t depend on x(t):

@J

@x(t)
=

@J

@h(t)
·
"
z(t) � @h(t�1)

@x(t)
+

@z(t)

@x(t)
� h(t�1)

#

+

@J

@h(t)
·
"
(1� z(t)) � @˜h(t)

@x(t)
+

@(1� z(t))

@x(t)
� ˜h(t)

#

=

@J

@h(t)
·
"
@z(t)

@x(t)
� h(t�1)

+ (1� z(t)) � @˜h(t)

@x(t)

#

� @J

@h(t)
@z(t)

@x(t)
� ˜h(t)

Almost there!
Multi-path to compute @J

@x

(t)

I Now we really just need to compute two things:
I Output gate:

@z(t)

@x(t)
= z(t) � (1� z(t)) �W

z

I Candidate ˜h:

@˜h(t)

@x(t)
= (1� (

˜h(t))2) �W

+ (1� (

˜h(t))2) � @r(t)

@x(t)
� Uh(t�1)

I Ok, I lied - there’s a third.
I Don’t forget to check all paths!

Almost there!
Multi-path to compute @J

@x

(t)

I Now we really just need to compute two things:
I Output gate:

@z(t)

@x(t)
= z(t) � (1� z(t)) �W

z

I Candidate ˜h:

@˜h(t)

@x(t)
= (1� (

˜h(t))2) �W

+ (1� (

˜h(t))2) � @r(t)

@x(t)
� Uh(t�1)

I Ok, I lied - there’s a third.
I Don’t forget to check all paths!

Almost there!
Multi-path to compute @J

@x

(t)

I Now we really just need to compute two things:
I Output gate:

@z(t)

@x(t)
= z(t) � (1� z(t)) �W

z

I Candidate ˜h:

@˜h(t)

@x(t)
= (1� (

˜h(t))2) �W

+ (1� (

˜h(t))2) � @r(t)

@x(t)
� Uh(t�1)

I Ok, I lied - there’s a third.
I Don’t forget to check all paths!

Almost there!

Multi-path to compute @J

@x

(t)

I Last one:
@r(t)

@x(t)
= r(t) � (1� r(t)) �W

r

I Now we can just add things up!
I (I’ll spare you the pain...)

Whew.
I Why three derivatives?
I Three arrows from x(t) to distinct nodes
I Four paths total (@z

(t)

@x

(t) appears twice)

Whew.
I GRUs are complicated
I All the pieces are simple
I Same matrix gradients that you’ve seen before

Summary

I Check your dimensions!
I Write error vectors �; just parentheses around chain rule
I Combine simple operations to make complex network

I Matrix-vector product
I Activation functions (tanh, sigmoid, softmax)

