
A Deep Learning Analytic Suite for Maximizing
Twitter Impact

Zhao Chen
Department of Physics

Stanford University
Stanford CA, 94305

zchen89[at]stanford.edu

Alexander Hristov
Department of Physics

Stanford University
Stanford CA, 94305

hristov[at]stanford.edu

Darvin Yi
Department of Biomedical Informatics

Stanford University
Stanford CA, 94305

darvinyi[at]stanford.edu

Abstract

We present a series of deep learning models for predicting user engagement with
twitter content, as measured by the number of retweets for a given tweet. We
train models based on classic LSTM-RNN and CNN architectures, along with a
more complex bi-directional LSTM-RNN with attention layer. We show that the
attention RNN performs the best with 61% validation accuracy, but that all three
deep learning models outperform human accuracy for the same task.

1 Introduction

Twitter has quickly become one of the leading platforms for content sharing, allowing both private
citizens and public corporations and everyone in between to quickly share both personal and com-
mercial content. Content providers seek to maximise the visibility of their posts and users benefit
when they find content relevant to their interests. Therefore, it is of great interest to find what kinds
of tweets are correlated with high retweet/favorite counts. Such information can inform content
providers what to produce and can help filtering algorithms deciding what content to show users.
Additionally, tweets are compact in length but rife with casual language, making them ideal can-
didate for natural language processing (NLP) techniques. We thus propose to develop an analytic
suite for tweets based on deep learning NLP techniques to predict the reception of tweets based on
twitter accounts and analyze how language patterns affect retweet count per account.

In order to adequately explore our model space, we propose multiple deep learning models to tackle
this problem. In increasing order of complexity, these are:

1. Vanilla LSTM-RNN Model
2. Contolutional 1d Alex-Net
3. Bi-directional LSTM-RNN with an Attention Layer

We expect that, due to the complexity of factors that may lead Twitter users to a tweet, and due to the
diversity amongst members of the Twitter community, that the more flexible, more complex models
will have better performance on this problem. To further illustrate this point, we will compare our
model with human performance at the same task, and show that the most complex models exceed
human ability to predict Twitter impact.

1



2 Background/Related Work

Recurrent neural networks have become standard building blocks in various language-related tasks,
and are widely used in machine translation [15], sentiment analysis [7], and even complex ques-
tion/answer systems [8]. The LSTM in particular [6] has become widely used as the go-to building
block for such RNN models due to their much more robust memories and ability to selectively forget
inconsequential subsequences compared with more vanilla modules.

For language processing tasks that involve longer sentences or information that is not purely pre-
sented in chronological sequence (a central assumption to training classic RNNs), the bidirectional
RNN [14] is a tempting choice. Bidirectional RNNs allow for sequences to be trained in both direc-
tions, and by concatenating hidden state vectors for both the forward and reverse legs of the BiRNN,
we can produce outputs at each time step, each of which were derived by the same total number of
affine/nonlinear transformations. These outputs can then be pooled to produce a final prediction.

The pooling itself can be accomplished by an attention layer, which have recently come into popular
use with RNN language models [16]. When our BiRNNs produce outputs at each layer, it is likely
that some outputs at certain positions will be more important in our predictive model than others.
In the spirit of deep learning, we would like the neural network to be able to decide itself which
outputs are more important. This is accomplished by placing an additional affine transformation and
nonlinearity at each output, and dotting the result with a context vector trained in parallel, which
then produces attention coefficients which inform our model how much to weight each output in the
final prediction. For more details, see Section 3.

In addition, although generally not used in language models, convolutional networks have also en-
joyed some measure of success in language related tasks, such as Twitter sentiment analysis [10].
That task and the task discussed here are both very similar, in both high level concept and prac-
tical details. The former uses the text to classify a tweet as either positve, neutral, negative in
sentiment and, as discussed in Section 3 the latter classifies to text into high, medium and low pop-
ularity/impact. We are therefore interested in how convolutional neural networks perform in our
impact prediction problem.

3 Approaches

We first describe our recurrent models before proceeding to the CNN. For our RNN models, we
use LSTM cells as our basic building blocks [6]. These models are now widely favored over simple
recurrent neural networks (SRNN’s), which suffer from optimization problems described in [2]. The
forward-pass equations for the LSTM for one step are summarized below:

it = σ(Wixt + Uiht−1 + bi) (1)

C̃t = tanh(Wcxt + Ucht−1 + bc) (2)
ft = σ(Wfxt + Ufht−1 + bf ) (3)

Ct = it ∗ C̃t + ft ∗ Ct−1 (4)
ot = σ(Woxt + Uoht−1 + VoCt + bo) (5)

ht = ot ∗ tanh(Ct) (6)

3.1 Classic LSTM-RNN

For a baseline model, we train a classic LSTM-RNN model, where we have a simple softmax layer

ŷ = softmax
(
WShT + bS

)
(7)

applied to the output of the last hidden layer.

A schematic of this model is shown in Figure 1. Though variants of LSTM cell have been published
in the literature, extensive studies have shown that modification of this cell does not appreciably
improve the performance of the model on many tasks [4].

2



Figure 1: RNN classifier Classical RNN classifier using LSTM cells.

3.2 Bi-Directional Attention Model

To improve on the above model, we make two key changes. First, we do not extract a prediction from
the end of the text alone, so we replace the RNN with a bidirectional RNN. To extract a prediction
from this, we pool output from each set of cells. This bidirectionality has previously been shown to
improve classification in local text tasks, such as phoneme classification [3] Second, we suppose that
not all words contribute equally to the representation of the text meaning. Therefore, we introduce
an attention mechanism which extracts the most important words and aggregate the representation
of those informative words to form a prediction of tweet usage. The bidirectional attention model
used here is based on the model described in [16]. Given outputs

−→
h i and

←−
h i produced at each time

step i, we first form the concatenated output vector [
←−
h i,
−→
h i]. We then create three new trainable

parameters, Ww, bw, and uw, such that we calculate

vi = tanh(Ww[
←−
h i,
−→
h i] + bw) (8)

We then compare the vector vi with a vector uw, and the strength of this comparison tells us how
much attention to pay to the word vi. More precisely,

αi =
exp(vTi uw)∑
j exp(v

T
j uw)

(9)

where the denominator is summed over all time-steps. This produces a probability distribution in
the αi over all steps, and we then take a weighted sum over this distribution:

ŷi =WS [
←−
h i,
−→
h i] + bS (10)

ŷ =

45∑
i=1

αiŷi (11)

The prediction is then taken as the argmax of the final class scores ŷ. We can also take the softma
scores softmax(ŷ) and take the expected value over the resultant distribution corresponding to
classes {0, . . . , C} to arrive at an expected class

E[C] =

C∑
i=1

iŷ[i] (12)

This is actually meaningful in our context as our classes represent a natural ordering for tweet
impact. The schematic of this model is shown in Figure 2

3



Figure 2: RNN classifier with attention A bidirectional RNN with outputs at each time-step further
weighted by attention weights αi.

3.3 Convolutional 1d AlexNet

Due to the success of convolutional neural networks in some language tasks, we choose to explore
whether a classic CNN architecture can perform well on our impact analysis problem. For simplicity,
we use a modified version of AlexNet, a famous CNN architecture which came into prominence after
winning the 2012 iteration of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[12]. Our model has similar patterns of conv layers, stride, and filter sizes, but we remove most
pooling layers due to the smaller sizes of our inputs. Of course, because our sequences lie in one
dimension, we also collapse our filters to be one dimensional. Our CNN architecture is as follow:

1. 96 11× 1 convolutional filters, stride 1.

2. 256 11× 1 convolutional filters, stride 1.

3. 384 11× 1 convolutional fliters, stride 1.

4. 384 11× 1 convolutional filters, stride 1.

5. 256 3× 1 convolutional filters, stride 1.

6. 45× 1 maxpool.

7. 256 FC.

8. 256 FC.

9. 3 FC (affine only).

The maxpooling collapses all information across the 45 time steps that we begin with in our model,
which we hope will mitigate the effects of the period padding we used to preprocess our data (see
next Section). A schematic of this model is shown in Figure 3

4



Figure 3: CNN classifier A one-dimensional CNN architecture based loosely on AlexNet for our
impact classification problem.

4 Experiment

4.1 Data

Twitter content from thirty news sources were compiled dating back nearly two years, depending on
source 1. A total of three thousand posts were collected for each news source. Each posted item has
text and impact metrics (retweets and favorites).

The impact metrics of each tweet are preprocessed per account to classify the post low impact,
medium impact, and high impact. This classification is done by partitioning the data into ordered
thirds based on the number of favorites, but alternative methods can easily be integrated into our
treatment. Then, all data for all accounts are pooled to form our final data set (see Figure 4). We
thus pose our problem as a 3-class classification problem. The classes are created on a per-account
basis as this allows us to normalize for the fact that some accounts have higher mean impact than
ohter accounts. We process Approximately 15% of the data is set aside as a validation set.

All tweet text is first pre-processed by using 50-d GloVe word vectors [13] obtained from
nlp.stanford.edu to turn length each tweet into an array of first dimension 50. Words were padded
with periods to standardize the length of each tweet to 45 words (the max length of any tweet in
our data set), giving each tweet a representation in R50 × R45. This allows us to have standardized,
same-length inputs.

4.2 Prediction Accuracy

A human performance baseline was used in which an author (A.T.H.) trained on a set of 150 tweets,
and then evaluated on a further set of 250 tweets. Though this set is considerably smaller, we feel it
is a fair representation: first, the binomial variance estimated in this way is quite small and second,
humans are much slower at this task so the time to train a human was within an order of magnitude
to the time to train some of the simpler models included here.

1The sources came from the following news organizations: BBC, CNN, USA Today, The Harvard Business
Review, Gizmodo, Fox News, ESPN News, E! News, New Scientist, The Economist, The Wall Street Journal,
Reuters, Newsweek, The Huffington Post, The New York Times, Time, Rolling Stone, Slate, Mashable, and
Tech Crunch. In some cases, multiple twitter accounts were used per source, so the total of thirty twitter feeds
reflects fewer sources.

5



Figure 4: Class distribution Tweets separated into three classes, based on their z-score (calculated
separately for each account before all data is pooled).

Models are run on AWS Grid K520 GPUs, and code was written in TensorFlow [1]. After running
our models, we report the validation accuracies as shown in Table 1 after an early stopping condition
in model training was reached (generally when the validation accuracy of the model ceases to im-
prove for two epochs). Training time varied for the different models, but generally ranged between
2 and 10 hours.

Basic hyperparameter search was performed. Due to time limitations, the number of hyperparameter
configurations tested for each model type varied from half a dozen to two dozen. All models were
also trained with batch size of 128 and the adam update rule for minimizing cross entropy loss [11].
We can see that the attention model performs the best, achieving training and validation accuracies

Table 1: Performance Comparison.

Algorithm Description Training
Acc.

Validation
Acc.

Human
Baseline

A human tried to guess how popular a tweet
would be. - 0.39

Basic
RNN

This was a vanilla RNN. We used code from the
second problem set. 0.75 0.51

Vanilla
LSTM

This is similar to the Basic RNN model above,
but we used a LSTM cell instead of a simple
affine transformation.

0.78 0.59

1-D CNN A 1-dimensional convolutional neural network
based on the architecture of AlexNet. 0.76 0.52

Attention
Model

A Bi-Directional RNN with an attention layer
placed on top. 0.82 0.61

of 82% and 61% respectively. The basic RNN (simple tanh nonlinearities after an affine transfor-
mation of nte inputs) performs the worst, beating the human baseline model but only achieving 51%
validation accuracy. The 1-D CNN and Vanilla LSTM models fall in the middle.

At test time, the attention model also provides reasonable results. For example, refer to the results
in Table 2. Even for example tweets that are similar in structure, the RNN can detect changes in
descriptive words embedded deep in the middle of a sentence and adjust the expect impact accord-
ingly.

6



Table 2: Test-time behavior of attention model

Tweet Predicted
Impact (E[C])

stock market suffers massive losses amid
nationwide strikes 1.85

stock market suffers minor losses amid
nationwide strikes 1.00

stock market stable 0.58

It is instructive to see how the model trains over time, and we show this in Figure 5. We can see that
there is some measure of overfitting, which suggests that we could increase the regularization penalty
to compensate. However, generally, increasing the regularization penalty did not lead to signifiant
improvements in our case, and we suspect that a more sizable improvement can be achieved by
deepening the model (i.e. adding more layers atop the first layer outputs of our RNN models). More
of this is discussed in Section 5.

Figure 5: RNN classifier Classical RNN classifier using LSTM cells.

It is, however, interesting to note that all our models outperform human performance at the impact
classification task. This suggests that although 61% accuracy may not seem high, impact classifi-
cation is a much more complex problem than tasks like sentiment analyses where humans tend to
do fairly well. We are thus asking our models to look for correlations between impact and Twitter
language that are not quite clear even to humans, making achieving 60% accuracy meaningful.

5 Conclusion

Deep learning provides improvements upon human accuracies in the Twitter impact classification
task. In terms of different deep learning models, the bidirectional RNN with attention layer per-
formed the best, possibly because it (1) incorporates information over the entire tweet with a flexible
weight, something a classical RNN cannot do, and (2) still explicitly takes sequence position into
account, something a CNN cannot do.

Given the improved performance of the algorithm over a human classifier, we find it highly intiguing
to speculate on the use of this system as a content curator. The quantitative model purely reacting to
user engagement seems freer of the biases of a human editor, who might naturally conflate ”what I
want” with ”what others want” in a common case of substituting an easy question for a more difficult
one [9]. However, a more fair comparison might come from the ”wisdom of crowds” in which this
bias can be reduced by averaging predictions over many individuals.

7



Another possible direction would be to explore deeper architectures to introduce even more nonlin-
earity into our model, and to perform more thorough hyperparameters search to combat overfitting.
The former may improve performance of the model by quite a lot; the weak human baseline for
this problem suggests that the problem itself is highly complex and may need a deeper rather than a
wider model.

Another useful direction to take these results might be to include user-specific input into a more
dynamic personalized recommender system, which remains an area of ongoing work for item rec-
ommendation [5], but which has yet to be investigated in the NLP context.

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

[3] Alex Graves and Jrgen Schmidhuber. Framewise phoneme classification with bidirectional
{LSTM} and other neural network architectures. Neural Networks, 18(56):602 – 610, 2005.
{IJCNN} 2005.

[4] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen Schmid-
huber. Lstm: A search space odyssey. arXiv preprint arXiv:1503.04069, 2015.

[5] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[7] Ozan Irsoy and Claire Cardie. Opinion mining with deep recurrent neural networks. In
EMNLP, pages 720–728, 2014.

[8] Mohit Iyyer, Jordan L Boyd-Graber, Leonardo Max Batista Claudino, Richard Socher, and Hal
Daumé III. A neural network for factoid question answering over paragraphs. In EMNLP,
pages 633–644, 2014.

[9] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.
[10] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network

for modelling sentences. Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics, June 2014.

[11] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[13] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In EMNLP, volume 14, pages 1532–1543, 2014.

[14] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. Signal Process-
ing, IEEE Transactions on, 45(11):2673–2681, 1997.

[15] Martin Sundermeyer, Tamer Alkhouli, Joern Wuebker, and Hermann Ney. Translation model-
ing with bidirectional recurrent neural networks. EMNLP, 2014.

[16] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchi-
cal attention networks for document classification.

8


	Introduction
	Background/Related Work
	Approaches
	Classic LSTM-RNN
	Bi-Directional Attention Model
	Convolutional 1d AlexNet

	Experiment
	Data
	Prediction Accuracy

	Conclusion

