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Abstract

Learning good semantic vector representations for phrases, sentences and para-
graphs is a challenging and ongoing area of research in natural language process-
ing and understanding. In this project, we survey and implement several deep-
learning and deep-learning-inspired approaches and evaluate these algorithms on
several sentiment-labeled datasets and analysis tasks. In doing so, we demon-
strate new state-of-the-art performance on the IMDB Large Movie Review Dataset
[5] using highly-tuned paragraph vectors [4], and highly competitive performance
on the Stanford Sentiment Treebank dataset [8] using Deep Recursive-NNs and
LSTMs for both binary and fine classification tasks. Finally, we compare and
analyze each model’s performance on our selection of sentiment analysis tasks.

1 Introduction

The problem of creating representions of text for computational analysis is core to the field of NLP.
In this project, we focus on looking at various models to create vector representations for the problem
of sentiment analysis, or, more specifically, predicting the positive or negative polarity of segments
of text.

2 Background/Related Work

Initial attempts to represent text used one-hot vectors to represent a word, where each dimension
of the vector corresponds to a distinct word. And in the simple ”bag of words” representation of a
document, the document is represented as the sum of the one-hot vectors of the words. However,
these representations lose much of the semantic meaning that we associate with text.

More recent work has focused on creating vector representations for both words and documents, with
the idea of retaining as much information as possible. In word2vec [6], vector representations are
computed for each word, with the result being that words whose meanings are related are generally
closer in terms of euclidean distance than between unrelated words.

Deep learning models have also been effective in tackling this problem. Recurrent neural networks,
by being able to retain memory between training examples, allows it to capture relations between
words, within models such as LSTMs having the ability to remember important information across
long stretches of time [1]. In this project, we attempt to replicate some of these results.
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3 Approach

3.1 Datasets

We evaluate the performance of our models on a number of datasets, including the Stanford Large
Movie Review Dataset (IMDB) dataset [5] and Stanford Sentiment Treebank dataset [8] derived
from Rotten Tomatoes movie reviews [7]. These two datasets allow us to evaluate and compare
performance against existing publications on both binary and fine-grained classification tasks.

3.2 Models

We evaluate the following models and algorithms:

3.2.1 Average of Word Vectors

We train word vectors in an unsupervised manner on the training set. To generate sentence or phrase
representations, we average the vectors for words contained in a text. This has the advantage of
being simple and fast to train once the word embeddings have been trained. A disadvantage is that
it loses information about word ordering. Some additional variants on this approach include using a
weighted average based on the tf-idf transform.

3.2.2 Paragraph Vector

Paragraph vectors is a model for learning representations for documents that learns in the same vein
as learning word vectors. Training word vectors occurs as normal, except that an additional vector
representing the paragraph is added to the task whenever the sampled window comes from that
paragraph. Thus, as more samples are taken over time from the paragraph, errors are backpropagated
into the vector. This works for both CBOW and Skip-gram architectures. This has been shown to
work better than just averaging the word vectors together [4].

For the sentiment analysis task, we learn paragraph vector representations on both training and test
data. Then, the paragraph vectors of the training set are used as features train a logistic classifier or
a multi-layer perceptron to predict the overall sentiment (positive or negative) of the paragraph. We
tune hyper-parameters using 5-fold cross validation or a hold out validation set, respectively for the
logistic regression classifier and MLP. Finally, we measure model accuracy on the unseen test set.

¶ the group talent assembled

of
Concatenate / Average

¶

the              group               of                talent       assembled

Figure 1: Paragraph vectors are trained to either (above) predict words in a sampled window from
within the paragraph as in Skip-gram, or appended alongside context words to predict a center word
from a sampled window, as in CBOW.
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In Autumn quarter, we successfully replicated and exceeded the previous state-of-the-art perfor-
mance reported by Le and Mikolov on the IMDB dataset using paragraph vectors [4]. Using knowl-
edge obtained from CS224D, we trained deeper models for the final classification stage on the IMDB
task and achieved an error rate of 5.496%, a 0.314% reduction in error over our previous CS224N re-
sult [2] and a 1.924% reduction from the results attained by Le and Mikolov [4]. Moreover, we have
greatly reduced the training time and improved the consistency of our MLP implementation on the
IMDB data. Specifically, for CS224D, we also extend our work to the Sentiment Treebank results
also reported by Le and Mikolov. In our experience, paragraph vectors perform sub-optimally com-
pared to those by Le and Mikolov on the Stanford Sentiment Treebank dataset, and in the following
sections, we provide some error analysis and insights as to why this is the case.

3.2.3 Long Short-Term Memory (LSTM)

Long short-term memory models are a type of recurrent neural network. In recurrent neural net-
works (RNN), predictions are made sequentially, and the hidden layer from one prediction is fed
to the hidden layer of the next prediction. This gives the network ”memory”, in the sense that the
results from previous predictions can inform future predictions. LSTMs add additional factors to
a traditional RNN that give it more of a fine-grained control over memory. These factors control
1) how much the current input matters in creating the new memory, 2) how much the previous
memories matters in creating the new memory, and 3) what parts of the memory are important in
generating the output.

LSTM LSTM LSTM LSTM LSTM

<s> that movie was great

that movie was great <\s> +

Figure 2: This diagram shows the setup for LSTM using only the last hidden dimension for sen-
timent prediction. The LSTM is jointly trained for language modeling. Alternate variants that we
experimented included averaging hidden states and only softmax/cross-entropy loss associated with
sentiment analysis.

We initially trained the LSTM for sentiment analysis by using only the final hidden state of the top
layer of the LSTM as input to a softmax or logistic classifier, as in [9]. However, we found that
by instead averaging the hidden states over the entirety of the sentence, we were able to get better
results. One explanation would be that doing so increases the level of feedback, particularly to
earlier words. The LSTM was trained using rmsprop, which worked better than using an annealed
learning rate. Dropout was found to be a powerful regularizer, even when the network was only
one layer deep. Increasing the number of layers, where the output of one layer is fed as input to
the next, was found to sometimes be effective. We found that initializing using GloVe vectors for
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the word embeddings substantially improved LSTM performance, at least for Treebank dataset. Our
experiments showed that L2 regularization was not particularly helpful.

3.2.4 Deep Recursive-NN

We implemented a deep recursive neural network. Like the shallow RNN, we back-propagate error
though a tree structure. However, we add an additional hidden layer to the tree structured back-
propagation. Our implementation is similar to the DRNN presented by Irsoy and Cardle [3], except
that for leaf nodes we have 2 two sets of word-vectors. We use ReLU activation units for non-
linearity.

Figure 3: An example of a 3-layer deep recursive neural network from Irsoy and Cardie [3]. For our
experiments, we trained a 2-layer deep RNN. We also added an additional 3rd, untied hidden layer,
between the 2nd layer and the softmax.

We tested our deep recursive-NN on the Stanford Sentiment Treebank data.

4 IMDB Dataset

The Stanford Large Movie Review (IMDB) Dataset [5] consists of 50,000 ”highly polar”, binary
labeled reviews from IMDB. These reviews are split 50:50 into training and testing sets. The distri-
bution of labels within each subset of data is balanced. The dataset also includes a further 50,000
unlabeled reviews which may be used for unsupervised training. We found that reviews averaged
267.9 tokens in length with a standard deviation of 198.8 tokens; the precise distribution of review
lengths is shown below.

Figure 4: Distribution of review lengths in the IMDB dataset.
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4.1 Model Tuning

4.1.1 Paragraph Vector

In training our paragraph vectors on the IMDB binary classification task, we found the optimal hy-
perparameters for the word and paragraph vector training to be 150 dimensions, 25 training epochs,
an initial learning rate of 0.05, negative sampling loss with 25 negative samples, and vocabulary
downsampling of 1e-4 and 1e-2 for CBOW and Skip-Gram respectively. Specifically, we found that
by tuning the downsampling parameter separately for the two models and then concatenating the re-
sulting paragraph vectors, we were able to obtain significantly better performance than either model
alone; we believe, that the two models are able capture different, orthogonal aspects of the data.

4.1.2 LSTM

On the IMDB dataset, our one-layer LSTM performed best with word vector and hidden dimensions
of 100. However, we tested dimensions ranging from 50 to 200; overall, the LSTM easily attains
high accuracy on the training set while failing to generalize to the test set. Optimal performance was
obtained after 10-17 training epochs.

4.2 Results

Model Train Test
NBSVM-bi (Wang & Manning, 2012) 0.912
Paragraph Vector (Le and Mikolov. 2014) 0.927
Averaged Word Vector 0.896 0.883
Paragraph Vector (LogReg) 0.975 0.944
Paragraph Vector (2-layer MLP) 0.971 0.945
LSTM 0.983 0.891

Table 1: Results on IMDB dataset binary classification task.

4.3 Analysis

Our Paragraph Vector implementation worked surprisingly well on the IMDB dataset, with perfor-
mance exceeding that of the original paper. Perhaps using different downsampling parameters for
the different architectures may have perhaps captured different information about the data that the
classifiers could capitalize on. The LSTM did not seem to perform as well on this task, though.

5 Stanford Sentiment Treebank Dataset

The Stanford Sentiment Treebank Dataset consists of 11,855 reviews from Rotten Tomatoes. They
are split across train, dev and test sets, containing 8,544, 1,101, and 2,210 reviews respectively.
Reviews are labeled on a 5 point scale corresponding to very negative, negative, neutral, positive,
and very positive. In accordance with existing results published on this dataset [8, 4], we present our
final accuracy and error scores on both binary and fine classification tasks over entire reviews. The
average review length is 20.1 tokens with a standard deviation of 9.3.

5.1 Model Tuning

5.1.1 Paragraph Vectors

We were ultimately unable to reproduce Le and Mikolov’s paragraph vector performance on the
sentiment treebank dataset. The best hyper-parameters we found for training the word and paragraph
vectors was a word and paragraph vector dimension of 400, negative sampling loss with 5 negative
samples, 25 epochs for training, initial learning rate of 0.025 and vocab sub-sampling rates of 5e-3
and 1e-1 for CBOW and Skip-Gram respectively. CBOW and Skip-Gram vectors were concatenated
for better performance. We also experimented with the hierarchical-softmax loss, but found that this
performed much worse due to overfitting to the training set, which is used to initialize the vocabulary.
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Figure 5: Distribution of review lengths in the Stanford Sentiment Treebank dataset.

5.1.2 LSTM

For our best results using LSTM on the Stanford Sentiment Treebank Dataset, we used an LSTM 3
layers deep, with word and hidden vector dimensions of 100, and dropout regularization with a drop
rate of 0.5. Updates were applied using RMSProp with an initial learning rate of 1, decay of 0.99
and epsilon of 1e-8.

5.2 Deep Recursive-NN

For our deep RNN, we used word vector and hidden dimensions of 75 (100 when pretrained Glove
vectors were used). The initial learning rate was set to 0.07 and adagrad was used for updates. We
set L2 regularization to 0.01 and applied a dropout regularization rate of 0.9 to each hidden layer.
Models were trained for up to 100 epochs. Generally, optimal performance is reached at around
40-60 epochs.

5.3 Results

Model Train Test
Averaged Word Vectors 0.806 0.786
Paragraph Vector 0.791 0.764
LSTM 0.935 0.843
Deep Recursive-NN 0.938 0.847

Table 2: Accuracy on Stanford Sentiment Treebank dataset for binary classification at the root.

Model Train Test
Averaged Word Vectors 0.549 0.406
Paragraph Vector 0.397 0.379
Paragraph Vector (pretrained word-embeddings) 0.411 0.391
LSTM 0.747 0.426
LSTM (w/ Glove word-vectors) 0.560 0.456
Deep Recursive-NN 0.584 0.469

Table 3: Accuracy on Stanford Sentiment Treebank dataset for 5-way classification at the root.
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Model Fine (5-class) Binary
DCNN (Blunsom, et al. 2014) 0.485 0.868
RNTN (Socher, et al. 2013) 0.457 0.854
CNN-non-static (Kim, 2014) 0.480 0.872
CNN-multi-channel (Kim, 2014) 0.474 0.881
DRNN w. pretrained word-embeddings (Irsoy and Cardie, 2014) 0.498 0.866
Paragraph Vector (Le and Mikolov. 2014) 0.487 0.878
Dependency Tree-LSTM (Tai, et al, 2015) 0.484 0.857
Constituency Tree-LSTM (Tai, et al, 2015) 0.439 0.820
Constituency Tree-LSTM (Glove vectors) (Tai, et al, 2015) 0.510 0.880
Paragraph Vector 0.391 0.798
LSTM 0.456 0.843
Deep Recursive-NN 0.469 0.847

Table 4: Our test accuracy on Stanford Sentiment Treebank dataset for binary classification at the
root compared to current state-of-the-art.

Model Train Test
RNTN (Socher, et al. 2013) 0.807
Deep-RNN 0.876 0.807

Table 5: Accuracy on Stanford Sentiment Treebank dataset for 5-way classification at all nodes.

5.4 Analysis

Overall, both our LSTM and Deep Recursive-NN performed very competitively and came close to
matching other state-of-the-art algorithms on both binary and fine-grained sentiment analysis on the
Stanford Sentiment Treebank dataset. Our best performance was obtained using the Deep Recursive-
NN with fine and binary classification accuracies 46.9% and 84.7% respectively. These results are
only exceeded by convolutional neural nets, Le’s reported performance with paragraph vectors, and
dependency-tree LSTMs when pretrained word-embeddings are removed from consideration.

5.4.1 Paragraph Vector

We were unable to replicate Le and Mikolov’s results for paragraph vectors on the Sentiment Tree-
bank Dataset, attaining accuracies of 0.391 and 0.798 for fine and binary classification respectively,
compared to 0.487 and 0.878 [4]. To identify the causes of these discrepancies, we examined both
the paragraph and word vectors produced by our extended version of word2vec. In doing so, we
found that word embeddings trained on only the Sentiment Treebank dataset alone were of signif-
icantly lower quality than those trained on the much larger IMDB dataset. Using our pre-trained
word embeddings from the IMDB dataset helped boost accuracy from 0.379 to 0.391 on the test
set. A small vocabulary size of roughly 4.5 thousand words was another consequence of the much
smaller dataset.
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Figure 6: Classification accuracy vs. review length in tokens. Initially we suspected that longer
sentences would be easier to classify and learn paragraph vectors over. This turned out not to be
the case. Instead, upon further analysis, we found that word2vec and our derived paragraph2vec
generates poor quality word vectors that impede performance across the board. We verified this
using the word distance metric code provided by word2vec [6].

5.4.2 LSTM

Our LSTM implementation was not as effective as the results reported in [9]. One reason could
be that we did not start using pre-initialized GloVe vectors until relatively late in our parameter
tuning. Our experiments showed that increasing the dimensions (using sizes 150, 200, and 300) of
the LSTM were not effective, but this was with randomly initialized word embeddings. Perhaps
using 300 dimensional GloVe vectors would indeed have been more effective. Furthermore, it is
worth

5.4.3 Deep Recursive-NN

Our implementation of DRNN matches other well performing architectures such RNTN in perfor-
mance on both fine and binary classification. In their original paper, Irsoy and Cardie report an
accuracies of 49.8% and 86.6% for fine and binary respectively [3]. However, those results were
obtained with pretrained word embeddings on the Google News Dataset with (1̃00B words) [3].
Thus, we feel that those results are not directly comparable with ours or RNTN results reported by
Socher, et al. in 2013 [8]. Similarly, our DRNN outperforms the Constituency Tree-LSTM model
proposed by Tai, et al. in 2015 [9] when word vectors are initialized randomly. The results re-
ported above for DRNN are obtained with randomly initialized word vectors. We have tested our
DRNN with 100-dimensional Glove vectors, with limited benefits so far. We consider retraining
with 300-dimensional Glove vectors and for longer periods to be future work.

Figure 7: Confusion matrices for fine-grained whole sentence classifcation for Deep Recursive-NN.
From left to right: train, dev, test.

8



6 Conclusion

Ultimately, we have surveyed and implemented a number of architectural and algorithmic ap-
proaches to learning distributed vector representations for paragraphs, sentences, and phrases with
the ultimate goal of sentiment analysis. We demonstrate new state-of-the-art performance using
paragraph vectors on the IMDB dataset. However, paragraph vectors live up to their reputation of
being extremely difficult to tune for the second Stanford Sentiment Treebank Dataset. For fine and
binary classification on this latter dataset, we demonstrate competitive performance using LSTM
and Deep Recursive-NN models.

7 Future Work

There are a number of ways in which this project could be expanded. One direction is using increas-
ingly complicated models. We were not quite able to finish an implementation of a bidirectional
LSTM, which has been shown by [9] to be effective as well for sentiment analysis, being able to
capture information at every time step from both previous and future text.

Another direction would be to apply our models onto other sorts of sentiment tasks. We would
like to see if such models can capture tricky implicit information of human communication such as
humor or sarcasm.
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