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Abstract 7 

Manual MeSH indexing of the millions of journal articles cataloged in 8 
PubMed each year has become a daunting and expensive challenge for the 9 
National Library of Medicine. While the prospect of automated indexing is 10 
tempting, the requisite task of multilabel hierarchical classification is a 11 
difficult one. This article explores the possibility of generating distributed 12 
vector representations of both PubMed abstracts (AbsVecs) and MeSH 13 
terms (TermVecs) that can be used to quickly assign relevant terms to new 14 
articles in an unsupervised fashion. 15 

 16 

1 Introduction 17 

Since 1960, the National Library of Medicine (NLM) has manually indexed journal articles 18 
in the life-sciences with Medical Subject Headings (MeSH). Updated yearly, MeSH is a 19 
thesaurus of 27,883 descriptors organized into a directed acyclic graph (DAG) with 16 top-20 
level categories (Figure 1). These descriptors help researchers navigate some 20 million 21 
articles cataloged in PubMed.  22 
 23 

 
Figure 1: High-level MeSH categories; NLM guidelines for MeSH indexing. Images from  24 

 25 

Manual MeSH indexing is held as the gold-standard, but it requires a team of expert indexers 26 
who are deeply familiar with the biomedical domain and MeSH terminology. As the body of 27 
biomedical literature grows exponentially, manual curation efforts have become increasingly 28 
expensive. Moreover, since MeSH is updated yearly, indexers do not re-index articles from 29 
prior years (although resources are available to link current MeSH terms with previous 30 
ones). Human curation also leaves ample room for subjectivity and inconsistency between 31 
indexers.  32 

To encourage researchers to develop algorithms which aid and replace human MeSH 33 



curation, the BioASQ initiative created a yearly challenge [1]. In this challenge, BioASQ 34 
provides millions of MeSH-labeled PubMed abstracts for competitors to train models on. 35 
Competitors can then use their models to predict MeSH labels for unlabeled abstracts, which 36 
BioASQ periodically releases in batches before they are manually indexed by the NLM.  37 

Since MeSH labels are organized hierarchically, the challenge task is a variant of multilabel 38 
document classification known as hierarchical classification. A PubMed article may be 39 
indexed not just by the leaves of the MeSH DAG, but also most internal nodes. This 40 
hierarchical wrinkle is both a blessing and a curse: while it collapses the some 28,000 41 
possible labels into a more manageable space, it complicates labeling strategies. Traditional 42 
metrics for flat multilabel classification, like accuracy, are binary “hit-miss” measures which 43 
fail to capture that closely related nodes share a greater similarity than distantly related 44 
nodes. 45 

 46 

My approach to this task can generally be outlined as follows: 47 

1) Generate distributed representations of abstracts (AbsVecs). 48 

2) For each MeSH term, merge related AbsVecs to generate a composite representation 49 
(TermVecs). 50 

3)  For unlabeled examples, generate test AbsVecs (i.e. query expansion); for each test 51 
AbsVec, rank TermVecs by their distance via some metric (e.g. cosine similarity), and 52 
threshold/thin the ranked list to remove redundant nodes (i.e. nodes on the same path). Such 53 
an approach should minimize a cost that takes the unique challenges of hierarchical 54 
classification into account.  55 

 56 
2 Background 57 

 58 
2 . 1  D i s t r i b u t e d  re p re s e n t a t i o n s  o f  w o r d s  a n d  s e n t e n c e s  59 

Word-to-vec (WV) is a neural-network like architecture with a single hidden layer created by 60 
Mikolov and coworkers to generate distributed representations of words [2]. It has two 61 
flavors. The skip-gram variant (WV-SG) takes a target word as input and attempts to predict 62 
its surrounding window of words (i.e. context). The continuous-bag-of-words (CBOW) 63 
model does the opposite: it tries to predict the target word from the target word’s context 64 
(figure 2). Both models have two weight matrices (one to connect the input layer to the 65 
hidden layer and one to connect the hidden layer to the output layer). Assuming an 66 
orientation in which the rows of a weight matrix correspond to words in the vocabulary and 67 
columns correspond to elements of the hidden layer, each row of either weight matrix is a 68 
vector corresponding word in the vocabulary which, through several rounds of forward- and 69 
back-propagation, comes to capture the semantic meaning of the word. The resulting word 70 
vectors (WordVecs) can be averaged to crudely represent longer strings of text, and are also 71 
useful inputs for a variety of deep learning networks like RNNs, RNTNs, and LSTMs. 72 

More recently, Mikolov and coworkers built upon WV to generate more precise vector 73 
representations of longer strings of text; this model is commonly known as paragraph-to-vec 74 
(PV) [3]. Like WV, PV comes in two variants: (PV-DM), which is analogous in structure to 75 
WV-CBOW, and PV-CBOW. These approaches are similar to their WV counterparts, except 76 
that a paragraph matrix is included. Assuming a similar orientation, rows of this matrix 77 
correspond to vector representations of documents. As the model is trained through rounds 78 
of forward- and back-propagation, the paragraph vectors come to represent how the broader 79 
document context modifies the meaning of the word vectors that comprise it. In essence, 80 
these paragraph vectors act like a document-wide “memory”. 81 



 
Figure 2: WV-CBOW model; PV-DM model. Images taken from Mikolov, et al. [3] 82 

 83 
 84 
2 . 2  H i e r a rc h i c a l  c l u s t e r i n g  s c o r i n g  85 

As mentioned in the introduction, there are unique challenges to hierarchical clustering 86 
relative to traditional clustering. For example, given a correct label of “cancer” and a 87 
predicted label of “lung-cancer”, a binary “hit-miss” metric like accuracy would give no 88 
credit to the prediction. However, a more appropriate metric would take into account that 89 
“lung-cancer” is closely related to “cancer” and view the prediction more favorably. These 90 
challenges are further discussed in detail by [4], and summarized in figure 3. Two promising 91 
metrics are MGIA and FLCA. 92 

 93 

 
Figure 3: Five types of unique scoring challenges in hierarchical classifcation. While a flat 94 

classification metric would score all of these misses equally, more advanced metrics such as 95 
MGIA and FLCA would score, for example, (a) and (b) as better classifications than (e). 96 

Image from Kosmopoluos, et al. [4] 97 

 98 
2 . 3  P r i o r  w o r k   99 



This is the fourth iteration of the BioASQ MeSH indexing task. There have been several 100 
successful entries [1], many of which outperform the NLM’s version of an automated 101 
indexer, the Medical Terminology Indexer (MTI). Performance results on the most recent 102 
test batch (batch 3, week 3) are shown in figure 4. The MeSHLabeler submissions, which 103 
take advantage of article metadata, are frequently top performers [5]. See http://participants-104 
area.bioasq.org/results/4a/ for more. 105 

 

 
Figure 4: BioASQ Task 4a, Test batch 3, week 3 results. LCA-F is a hierarchical measure of 106 

performance. Image from the BioASQ participants area webpage. 107 

 108 
3 Approach and experiment 109 

 110 
3 . 1  I n p u t s  111 

 112 
3 . 1 . 1  M e S H  h i e r a rc h y  113 

The 2016 version of MeSH has some 27.9 K terms organized into a DAG. BioASQ provides 114 
this DAG as a parent child list. Inspection of this graph through the python networkx library 115 
revealed the properties shown in figure 5. The longest path was determined to be 17. 116 

 117 

 



 
Figure 5: Summary of properties of the MeSH DAG. 118 

 119 

 120 
3 . 1 . 2  D a t a s e t   121 

BioASQ provides two versions of the 2016 training set, both in JSON. The first is a 20.9 GB 122 
set with 12.2 M mesh-labeled abstracts (along with other information such as title, journal, 123 
and pubmed id). The second is a 8.5 GB subset with 4.9 M abstracts from a limited list of 124 
journals. The unlabeled test sets provided on BioASQ use the same limited list of journals. 125 
While initial efforts went into working with the complete dataset, the difficulties involved 126 
with working with the larger dataset led to the use of the limited one. 127 

Analysis of the number of MeSH terms used to label each training example revealed an 128 
average of 13 labels with considerable variation (figures 6 and 7). This variation confounds 129 
efforts to predict labels, as the number of labels is not known in advance. Moreover, brute-130 
force approaches to minimize cost over all possible numbers of labels  131 

 132 

 
Figure 6: Distribution of MeSH label counts for the limited 8.5 GB dataset of abstracts 133 

(standard scale; log scale). 134 

 135 

 
Figure 7: Corresponding summary statistics for figure 6 (MeSH label counts). 136 

 137 

Additional analysis of some 154 million labels in the complete 20.9 GB dataset found a 138 
bimodal distribution of shortest paths (figures 8 and 9). This finding suggests that an 139 
intelligent search algorithm should be able to achieve higher performance relative to brute-140 
force sampling of all 27.9 K possible MeSH terms—many of the terms are only  141 



 
Figure 8: Distribution of shortest path lengths for all 154,100,126 labels encountered in the 142 

complete 20.9 GB training set. The distribution appears to be bimodal. 143 

 144 

 
Figure 9: Summary statistics for the shortest path lengths for all 154,100,126 labels 145 

encountered in the complete 20.9 GB training set. 146 

 147 
 148 
3 . 1 . 3  Wo r d  v e c t o r s  149 

Initial word vectors (WordVecs) were provided as a resource from BioASQ and described at 150 
http://participants-area.bioasq.org/info/BioASQword2vec/. Briefly, ~10.9 million abstracts 151 
were striped of punctuation and converted to lower case. The resulting corpus had ~9.4 152 
million unique words. The Gensim implementation of WV was then applied to the corpus, 153 
which yielded 1.7 million 200-dimensional WordVecs (each corresponding word had a 154 
minimum of 5 mentions in the corpus). The corresponding 3.5 GB space-delimited file had 155 
one vector per line; a corresponding file with a sorted list of words in the vocab indexed 156 
these vectors. 157 

 158 
3 . 2  P ro c e s s i n g  159 
 160 
3 . 1 . 1  C re a t i n g  A b s Ve c s    161 

There are many possible avenues to generating vector representations of abstracts 162 
(AbsVecs). The simplest of these is to take a uniform average of the WordVecs for each word 163 
in the abstract, which is ultimately the approach that was pursued in this paper. This 164 
approach gives very coarse vectors because words that are simply mentioned more often will 165 
tend to dominate the average, resulting in low signal-to-noise. An improvement on this 166 
approach is to use a similar but weighted average of WordVecs. Because the task seeks to 167 
index documents with broad terms that capture what the document is about, a term-168 



frequency inverse document-frequency (TF-IDF) weighting that effectively identifies 169 
keywords makes appropriate sense. Ultimately, an approach such as PV or RNNs to better 170 
estimate the weights on the WordVecs would likely yield even better composite 171 
representations.  172 

To generate AbsVecs for each training example, raw abstract text was stripped of 173 
punctuation and converted to lowercase. The resulting words were looked up in the BioASQ 174 
provided vocab to obtain a word index, which in turn was used to locate the corresponding 175 
WordVec. The WordVecs for each word in a given abstract were then averaged to create an 176 
AbsVec (one per training example). Like the comprising WordVecs, each AbsVec was 200-177 
dimensional. 178 

 179 
3 . 1 . 2  C re a t i n g  Te r m Ve c s   180 

As with generating AbsVecs, there are many possible ways to create vector representations 181 
of MeSH terms (TermVecs). Again, the simplest possibility to generate a TermVec (and the 182 
one that was pursued in this paper) is to take all of the AbsVecs associated with a given term 183 
and to average them. This approach has a disadvantage in that it will not produce a TermVec 184 
for any term not used in the training corpus. A better approach would be to merge the 185 
average of a term’s AbsVecs the average of its children’s TermVecs. A simple 50-50 186 
weighting structure, would be the first thing to try herealthough a neural network could also. 187 
Indeed, the hierarchical structure of the MeSH resembles that of a Recursive Neural 188 
Network, so it appears likely that an RNN-like arch.  189 

Like the comprising AbsVecs, each TermVec was 200-dimensional. 190 

 191 
3 . 1 . 3  P re d i c t i n g  M e S H  l a b e l s  192 

Regrettably, while I was able to produce a basic set of training AbsVecs and TermVecs, I 193 
failed to generate a set of validation or test AbsVecs within the constraints of the project 194 
timeline. Given additional time, I would have liked to have a) performed 3-fold cross-195 
validation when generating TermVecs from the training AbsVecs (such code to generate 3-196 
fold TermVecs from AbsVecs is included in the submission), and b) generated AbsVecs from 197 
unlabeled test data to make predictions for submission to BioASQ.  198 

To make a prediction for an unlabeled test AbsVec, I would have calculated a list of 199 
TermVecs ranked and sorted on their distance to the AbsVec (e.g. via cosine similarity or 200 
Euclidean distance). If necessary, a threshold could be applied to the ranked list (e.g. top 201 
10%). Then, given a fixed number of labels, I would have attempted to find the pruning of 202 
that ranked list that gave the highest combined while enforcing the NLM-dictated constraint 203 
that any predicted term have no predecessors (ancestors) that are also predictions (e.g. 204 
“cancer” would not be a valid label if “lung-cancer” was a superior prediction). In the case 205 
of validation, the cost of the predicted terms could be established using accuracy (flat 206 
metric) and F-LCA (hierarchical metric).  207 

 208 
4 Conclusions 209 

Progress on the project was greatly hampered by the size of the datasets involved (20.9 GB 210 
for the complete dataset, 8.5 GB for the 3.5 GB for the WordVectors). Downloading and 211 
decompressing the data proved alone proved to be nontrivial, as BioASQ used a compression 212 
protocol not documented on their website. Over the course of the project, a significant 213 
amount of time was also invested into working with the large 20.9 GB dataset. After 214 
struggling with the size of the dataset (which would not fit in RAM), an effort was made to 215 
organize data and resulting calculations into a sqlite database for faster querying; however,  216 
while the database was successfully created, this amounted to a dead end effort with little 217 
useful speedup, and ultimately the decision was made to use the smaller, more limited 8.5 218 
GB dataset. Future work would greatly benefit from better organization and access to the 219 
large datasets. 220 

Nonetheless, the work above has produced a set of AbsVecs (each the average of comprising 221 



WordVecs) and TermVecs (each the average of comprising AbsVecs) for the limited training 222 
set data provided by BioASQ. The usefulness of these two resources remains to be 223 
evaluated. As mentioned, both the generation of the AbsVecs and the TermVecs could easily 224 
be improved beyond the by using smarter weighting (e.g. by using TF-IDF for AbsVecs or 225 
propagation of TermVecs through the DAG) or by using a neural architecture to learn 226 
appropriate weights. More generally, an integrated learning model that was trained to give 227 
task specific (rather than general purpose) AbsVecs and TermVecs based directly on 228 
predictive performance (e.g. measured by F-LCA) is also likely to give better results; 229 
however, it remains unclear to me how to adapt deep networks to the unique challenges of 230 
multilabel hierarchical classification (at least in an efficient way that takes advantage of the 231 
hierarchical structure). 232 

There are several additional possibilities for improvement. The MeSHLearner model 233 
established that other abstract metadata can providing invaluable features for better 234 
classification [5]. This finding makes tremendous sense—for instance, certain journals (e.g. 235 
“Cancer”) are likely to have very common MeSH annotations. Rather than comparing 236 
representations of abstracts against representations of terms, it may ultimately be more 237 
helpful to conceptualize embedding abstracts as some representation of a DAG and attempt 238 
to reconcile the predicted DAG with some pruning of the full MeSH DAG structure 239 
(inspiration from [6]). 240 
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