

Distributed Representations for Automating
MeSH Indexing

Scott A Longwell 1

Department of Bioengineering 2
Stanford University 3
Palo Alto, CA 94306 4

longwell@stanford.edu 5

 6

Abstract 7

Manual MeSH indexing of the millions of journal articles cataloged in 8
PubMed each year has become a daunting and expensive challenge for the 9
National Library of Medicine. While the prospect of automated indexing is 10
tempting, the requisite task of multilabel hierarchical classification is a 11
difficult one. This article explores the possibility of generating distributed 12
vector representations of both PubMed abstracts (AbsVecs) and MeSH 13
terms (TermVecs) that can be used to quickly assign relevant terms to new 14
articles in an unsupervised fashion. 15

 16

1 Introduction 17

Since 1960, the National Library of Medicine (NLM) has manually indexed journal articles 18
in the life-sciences with Medical Subject Headings (MeSH). Updated yearly, MeSH is a 19
thesaurus of 27,883 descriptors organized into a directed acyclic graph (DAG) with 16 top-20
level categories (Figure 1). These descriptors help researchers navigate some 20 million 21
articles cataloged in PubMed. 22
 23

Figure 1: High-level MeSH categories; NLM guidelines for MeSH indexing. Images from 24

 25

Manual MeSH indexing is held as the gold-standard, but it requires a team of expert indexers 26
who are deeply familiar with the biomedical domain and MeSH terminology. As the body of 27
biomedical literature grows exponentially, manual curation efforts have become increasingly 28
expensive. Moreover, since MeSH is updated yearly, indexers do not re-index articles from 29
prior years (although resources are available to link current MeSH terms with previous 30
ones). Human curation also leaves ample room for subjectivity and inconsistency between 31
indexers. 32

To encourage researchers to develop algorithms which aid and replace human MeSH 33

curation, the BioASQ initiative created a yearly challenge [1]. In this challenge, BioASQ 34
provides millions of MeSH-labeled PubMed abstracts for competitors to train models on. 35
Competitors can then use their models to predict MeSH labels for unlabeled abstracts, which 36
BioASQ periodically releases in batches before they are manually indexed by the NLM. 37

Since MeSH labels are organized hierarchically, the challenge task is a variant of multilabel 38
document classification known as hierarchical classification. A PubMed article may be 39
indexed not just by the leaves of the MeSH DAG, but also most internal nodes. This 40
hierarchical wrinkle is both a blessing and a curse: while it collapses the some 28,000 41
possible labels into a more manageable space, it complicates labeling strategies. Traditional 42
metrics for flat multilabel classification, like accuracy, are binary “hit-miss” measures which 43
fail to capture that closely related nodes share a greater similarity than distantly related 44
nodes. 45

 46

My approach to this task can generally be outlined as follows: 47

1) Generate distributed representations of abstracts (AbsVecs). 48

2) For each MeSH term, merge related AbsVecs to generate a composite representation 49
(TermVecs). 50

3) For unlabeled examples, generate test AbsVecs (i.e. query expansion); for each test 51
AbsVec, rank TermVecs by their distance via some metric (e.g. cosine similarity), and 52
threshold/thin the ranked list to remove redundant nodes (i.e. nodes on the same path). Such 53
an approach should minimize a cost that takes the unique challenges of hierarchical 54
classification into account. 55

 56
2 Background 57

 58
2 . 1 D i s t r i b u t e d re p re s e n t a t i o n s o f w o r d s a n d s e n t e n c e s 59

Word-to-vec (WV) is a neural-network like architecture with a single hidden layer created by 60
Mikolov and coworkers to generate distributed representations of words [2]. It has two 61
flavors. The skip-gram variant (WV-SG) takes a target word as input and attempts to predict 62
its surrounding window of words (i.e. context). The continuous-bag-of-words (CBOW) 63
model does the opposite: it tries to predict the target word from the target word’s context 64
(figure 2). Both models have two weight matrices (one to connect the input layer to the 65
hidden layer and one to connect the hidden layer to the output layer). Assuming an 66
orientation in which the rows of a weight matrix correspond to words in the vocabulary and 67
columns correspond to elements of the hidden layer, each row of either weight matrix is a 68
vector corresponding word in the vocabulary which, through several rounds of forward- and 69
back-propagation, comes to capture the semantic meaning of the word. The resulting word 70
vectors (WordVecs) can be averaged to crudely represent longer strings of text, and are also 71
useful inputs for a variety of deep learning networks like RNNs, RNTNs, and LSTMs. 72

More recently, Mikolov and coworkers built upon WV to generate more precise vector 73
representations of longer strings of text; this model is commonly known as paragraph-to-vec 74
(PV) [3]. Like WV, PV comes in two variants: (PV-DM), which is analogous in structure to 75
WV-CBOW, and PV-CBOW. These approaches are similar to their WV counterparts, except 76
that a paragraph matrix is included. Assuming a similar orientation, rows of this matrix 77
correspond to vector representations of documents. As the model is trained through rounds 78
of forward- and back-propagation, the paragraph vectors come to represent how the broader 79
document context modifies the meaning of the word vectors that comprise it. In essence, 80
these paragraph vectors act like a document-wide “memory”. 81

Figure 2: WV-CBOW model; PV-DM model. Images taken from Mikolov, et al. [3] 82

 83
 84
2 . 2 H i e r a rc h i c a l c l u s t e r i n g s c o r i n g 85

As mentioned in the introduction, there are unique challenges to hierarchical clustering 86
relative to traditional clustering. For example, given a correct label of “cancer” and a 87
predicted label of “lung-cancer”, a binary “hit-miss” metric like accuracy would give no 88
credit to the prediction. However, a more appropriate metric would take into account that 89
“lung-cancer” is closely related to “cancer” and view the prediction more favorably. These 90
challenges are further discussed in detail by [4], and summarized in figure 3. Two promising 91
metrics are MGIA and FLCA. 92

 93

Figure 3: Five types of unique scoring challenges in hierarchical classifcation. While a flat 94

classification metric would score all of these misses equally, more advanced metrics such as 95
MGIA and FLCA would score, for example, (a) and (b) as better classifications than (e). 96

Image from Kosmopoluos, et al. [4] 97

 98
2 . 3 P r i o r w o r k 99

This is the fourth iteration of the BioASQ MeSH indexing task. There have been several 100
successful entries [1], many of which outperform the NLM’s version of an automated 101
indexer, the Medical Terminology Indexer (MTI). Performance results on the most recent 102
test batch (batch 3, week 3) are shown in figure 4. The MeSHLabeler submissions, which 103
take advantage of article metadata, are frequently top performers [5]. See http://participants-104
area.bioasq.org/results/4a/ for more. 105

Figure 4: BioASQ Task 4a, Test batch 3, week 3 results. LCA-F is a hierarchical measure of 106

performance. Image from the BioASQ participants area webpage. 107

 108
3 Approach and experiment 109

 110
3 . 1 I n p u t s 111

 112
3 . 1 . 1 M e S H h i e r a rc h y 113

The 2016 version of MeSH has some 27.9 K terms organized into a DAG. BioASQ provides 114
this DAG as a parent child list. Inspection of this graph through the python networkx library 115
revealed the properties shown in figure 5. The longest path was determined to be 17. 116

 117

Figure 5: Summary of properties of the MeSH DAG. 118

 119

 120
3 . 1 . 2 D a t a s e t 121

BioASQ provides two versions of the 2016 training set, both in JSON. The first is a 20.9 GB 122
set with 12.2 M mesh-labeled abstracts (along with other information such as title, journal, 123
and pubmed id). The second is a 8.5 GB subset with 4.9 M abstracts from a limited list of 124
journals. The unlabeled test sets provided on BioASQ use the same limited list of journals. 125
While initial efforts went into working with the complete dataset, the difficulties involved 126
with working with the larger dataset led to the use of the limited one. 127

Analysis of the number of MeSH terms used to label each training example revealed an 128
average of 13 labels with considerable variation (figures 6 and 7). This variation confounds 129
efforts to predict labels, as the number of labels is not known in advance. Moreover, brute-130
force approaches to minimize cost over all possible numbers of labels 131

 132

Figure 6: Distribution of MeSH label counts for the limited 8.5 GB dataset of abstracts 133

(standard scale; log scale). 134

 135

Figure 7: Corresponding summary statistics for figure 6 (MeSH label counts). 136

 137

Additional analysis of some 154 million labels in the complete 20.9 GB dataset found a 138
bimodal distribution of shortest paths (figures 8 and 9). This finding suggests that an 139
intelligent search algorithm should be able to achieve higher performance relative to brute-140
force sampling of all 27.9 K possible MeSH terms—many of the terms are only 141

Figure 8: Distribution of shortest path lengths for all 154,100,126 labels encountered in the 142

complete 20.9 GB training set. The distribution appears to be bimodal. 143

 144

Figure 9: Summary statistics for the shortest path lengths for all 154,100,126 labels 145

encountered in the complete 20.9 GB training set. 146

 147
 148
3 . 1 . 3 Wo r d v e c t o r s 149

Initial word vectors (WordVecs) were provided as a resource from BioASQ and described at 150
http://participants-area.bioasq.org/info/BioASQword2vec/. Briefly, ~10.9 million abstracts 151
were striped of punctuation and converted to lower case. The resulting corpus had ~9.4 152
million unique words. The Gensim implementation of WV was then applied to the corpus, 153
which yielded 1.7 million 200-dimensional WordVecs (each corresponding word had a 154
minimum of 5 mentions in the corpus). The corresponding 3.5 GB space-delimited file had 155
one vector per line; a corresponding file with a sorted list of words in the vocab indexed 156
these vectors. 157

 158
3 . 2 P ro c e s s i n g 159
 160
3 . 1 . 1 C re a t i n g A b s Ve c s 161

There are many possible avenues to generating vector representations of abstracts 162
(AbsVecs). The simplest of these is to take a uniform average of the WordVecs for each word 163
in the abstract, which is ultimately the approach that was pursued in this paper. This 164
approach gives very coarse vectors because words that are simply mentioned more often will 165
tend to dominate the average, resulting in low signal-to-noise. An improvement on this 166
approach is to use a similar but weighted average of WordVecs. Because the task seeks to 167
index documents with broad terms that capture what the document is about, a term-168

frequency inverse document-frequency (TF-IDF) weighting that effectively identifies 169
keywords makes appropriate sense. Ultimately, an approach such as PV or RNNs to better 170
estimate the weights on the WordVecs would likely yield even better composite 171
representations. 172

To generate AbsVecs for each training example, raw abstract text was stripped of 173
punctuation and converted to lowercase. The resulting words were looked up in the BioASQ 174
provided vocab to obtain a word index, which in turn was used to locate the corresponding 175
WordVec. The WordVecs for each word in a given abstract were then averaged to create an 176
AbsVec (one per training example). Like the comprising WordVecs, each AbsVec was 200-177
dimensional. 178

 179
3 . 1 . 2 C re a t i n g Te r m Ve c s 180

As with generating AbsVecs, there are many possible ways to create vector representations 181
of MeSH terms (TermVecs). Again, the simplest possibility to generate a TermVec (and the 182
one that was pursued in this paper) is to take all of the AbsVecs associated with a given term 183
and to average them. This approach has a disadvantage in that it will not produce a TermVec 184
for any term not used in the training corpus. A better approach would be to merge the 185
average of a term’s AbsVecs the average of its children’s TermVecs. A simple 50-50 186
weighting structure, would be the first thing to try herealthough a neural network could also. 187
Indeed, the hierarchical structure of the MeSH resembles that of a Recursive Neural 188
Network, so it appears likely that an RNN-like arch. 189

Like the comprising AbsVecs, each TermVec was 200-dimensional. 190

 191
3 . 1 . 3 P re d i c t i n g M e S H l a b e l s 192

Regrettably, while I was able to produce a basic set of training AbsVecs and TermVecs, I 193
failed to generate a set of validation or test AbsVecs within the constraints of the project 194
timeline. Given additional time, I would have liked to have a) performed 3-fold cross-195
validation when generating TermVecs from the training AbsVecs (such code to generate 3-196
fold TermVecs from AbsVecs is included in the submission), and b) generated AbsVecs from 197
unlabeled test data to make predictions for submission to BioASQ. 198

To make a prediction for an unlabeled test AbsVec, I would have calculated a list of 199
TermVecs ranked and sorted on their distance to the AbsVec (e.g. via cosine similarity or 200
Euclidean distance). If necessary, a threshold could be applied to the ranked list (e.g. top 201
10%). Then, given a fixed number of labels, I would have attempted to find the pruning of 202
that ranked list that gave the highest combined while enforcing the NLM-dictated constraint 203
that any predicted term have no predecessors (ancestors) that are also predictions (e.g. 204
“cancer” would not be a valid label if “lung-cancer” was a superior prediction). In the case 205
of validation, the cost of the predicted terms could be established using accuracy (flat 206
metric) and F-LCA (hierarchical metric). 207

 208
4 Conclusions 209

Progress on the project was greatly hampered by the size of the datasets involved (20.9 GB 210
for the complete dataset, 8.5 GB for the 3.5 GB for the WordVectors). Downloading and 211
decompressing the data proved alone proved to be nontrivial, as BioASQ used a compression 212
protocol not documented on their website. Over the course of the project, a significant 213
amount of time was also invested into working with the large 20.9 GB dataset. After 214
struggling with the size of the dataset (which would not fit in RAM), an effort was made to 215
organize data and resulting calculations into a sqlite database for faster querying; however, 216
while the database was successfully created, this amounted to a dead end effort with little 217
useful speedup, and ultimately the decision was made to use the smaller, more limited 8.5 218
GB dataset. Future work would greatly benefit from better organization and access to the 219
large datasets. 220

Nonetheless, the work above has produced a set of AbsVecs (each the average of comprising 221

WordVecs) and TermVecs (each the average of comprising AbsVecs) for the limited training 222
set data provided by BioASQ. The usefulness of these two resources remains to be 223
evaluated. As mentioned, both the generation of the AbsVecs and the TermVecs could easily 224
be improved beyond the by using smarter weighting (e.g. by using TF-IDF for AbsVecs or 225
propagation of TermVecs through the DAG) or by using a neural architecture to learn 226
appropriate weights. More generally, an integrated learning model that was trained to give 227
task specific (rather than general purpose) AbsVecs and TermVecs based directly on 228
predictive performance (e.g. measured by F-LCA) is also likely to give better results; 229
however, it remains unclear to me how to adapt deep networks to the unique challenges of 230
multilabel hierarchical classification (at least in an efficient way that takes advantage of the 231
hierarchical structure). 232

There are several additional possibilities for improvement. The MeSHLearner model 233
established that other abstract metadata can providing invaluable features for better 234
classification [5]. This finding makes tremendous sense—for instance, certain journals (e.g. 235
“Cancer”) are likely to have very common MeSH annotations. Rather than comparing 236
representations of abstracts against representations of terms, it may ultimately be more 237
helpful to conceptualize embedding abstracts as some representation of a DAG and attempt 238
to reconcile the predicted DAG with some pruning of the full MeSH DAG structure 239
(inspiration from [6]). 240

A c k n o w l e d g m e n t s 241

The author thanks the CS224d teaching assistants for their hard work this quarter as well as 242
Dr. Socher for his excellent lectures and guidance. 243

R e f e re n c e s 244
[1] G. Tsatsaronis, et al: An overview of the BIOASQ large-scale biomedical semantic indexing and 245
question answering competition. Apr. 30, 2015. BMC Bioinformatics. 246
[2] T. Mikolov, et al: Efficient estimation of word representations in vector space. Version 3. Sept. 7, 247
2013. arXiv:1301.3781v3. [cs.CL] 248
[3] Q. Le & T. Mikolov: Distributed representations of sentences and documents. Version 2. May 22, 249
2014. arXiv:1405.4053v2 [cs.CL] 250
[4] A. Kosmopoulos, et al: Evaluation measures for hierarchical classification: a unified view and 251
novel approaches. Version 2. Jul. 1, 2013. arXiv: 1306.6802v2 [cs.AI] 252
[5] K. Liu, et al: MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating 253
diverse evidence. Jun., 2015. Bioinformatics. 254
[6] S. Bengio, J. Weston, & D. Grangier: Label embedding trees for large multi-class tasks. 2010. 255
Advances in Neural Information Processing Systems 27, 163-171. 256

