A Batch-Normalized Recurrent Network for
Sentiment Classification

Horia Margarit Raghav Subramaniam
horia@stanford.edu rsub@stanford.edu
Abstract

In this paper, we build a batch-normalized variant of the LSTM architecture in
which each LSTM cell’s input, hidden state, and cell state is normalized. The
LSTM architecture allows for models with fewer vanishing gradients and there-
fore more memory than a vanilla recurrent network. Batch normalization lends
a higher training speed to the model. We apply this architecture to a five-class
sentence sentiment classification task with data from the Stanford Sentiment Tree-
bank and show the effects of batch normalization.

1 Introduction

Our task is a five-class (very negative, negative, neutral, positive, very positive) sentence sentiment
classification task with sentence data and labels from the Stanford Sentiment Treebank [6]. We use
a Long Short-Term Memory (LSTM) [3] neural network architecture with batch normalization on
the input, hidden states, and cell state of each LSTM cell, as in [2].

In order to adapt the batch-normalized LSTM (BN-LSTM) architecture to the sentiment classifi-
cation task, we had to make a few changes. First, we converted one-hot word vectors into word
vectors with lower dimensionality by using an embedding matrix. Next, the task described in [2] is
classification on a sequential version of the MNIST dataset, so that the inputs to the LSTM have the
same length. We had to employ padding and bucketing in order to allow for sentences of varying
lengths to be inputs to the LSTM.

The Stanford Sentiment Treebank contains predefined train, dev, and test splits. We train our model
on the sentences in the train split and a sampling of the labeled sub-sentence phrases in the training
set, validate on the sentences in the dev split, and test on the sentences in the test split.

LSTMs are advantageous to vanilla recurrent networks because they can avoid the vanishing gradient
problem, increasing their “memory”. Batch normalization helps to increase the convergence speed
of stochastic gradient descent (SGD) in training recurrent models [2].

We use the Tensorflow [1] library to build our model, numerically compute the backpropagation
gradients, and run SGD.

2 Related Work

Hochreiter et al. introduced the LSTM architecture for sequential tasks in [3] and loeffe et al.
introduced batch normalization for deep neural networks in [4]. Cooijmans et al. very recently
introduced a variant of batch normalization for LSTM in [2]. The five-way sentence sentiment
classification task and the Stanford Sentiment Treebank dataset are outlined in [6]. The state of the
art for this task is achieved by Kumar et al. in [5].

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

3 Approach

3.1 LSTM

Figure 1: A many-to-one RNN architecture. We feed the hidden state of each RNN cell as an input
into the next RNN cell. We use the output of the last RNN cell as in input into a softmax classifier.

A Recurrent Neural Network (RNN) is a deep neural network designed for sequential data. A vanilla

RNN is a set of N RNN cells that map a set of inputs x1, ..., 2y, where a subscript of ¢ refers to
the 7™ input in the sequence or the i RNN cell, into a set of hidden states Ay, . .., hy via the update
equations

hy = f(Wrhy 1 + Wyx; +b) (D

where f is a nonlinearity (¢ and tanh are common). From the hidden states, a softmax layer can be
used to classify the inputs. A problem with vanilla RNNs is that of vanishing gradients, where the
input at time ¢; has little effect on the hidden state at time to with ¢ much greater than ¢;, due to
the effects of many iterated os or tanhs. The LSTM solves this problem. An LSTM is defined by
the update equations

f;
I = Wihy + Wox; +b)
t
gt
Ct = O'(i:‘t) ®ci—1 + O'(it) ® tanh(flt) (3)
ht = O'((N)t) © tanh(ct) (4)
The LSTM adds a set of cell states cq,...,cy to the model. Observe that, due to 3, the cell state

for one LSTM cell, ¢, can be an affine function of the previous cells tate ¢;. Since nonlinearities
cause vanishing gradients, the LSTM can propagate cell states across a large number of LSTM cells.
This makes an LSTM effective for tasks like sentence-level and paragraph-level sentiment detection,
where a negation early on in a sentence can change the meaning of words later in the sentence.

We implemented a vanilla LSTM as a baseline and a point of comparison for the LSTM with batch
normalization, described below.

3.2 LSTM with Batch Normalization

The phenomenon of covariate shift is known to reduce the training efficiency of deep neural networks
[4]. Each batch of inputs to the model (and therefore other feed-forward activations) has different
statistics that are not typically representative of the training data as a whole. The layers of the
model must constantly adapt to these changing statistics, which leads to inefficient training. Batch
normalization is a technique to reduce these effects and improve the training speed of the model.

h—E(h)

BN(h;v,B) =B +v——
Var(h) + €

(&)

We apply the batch normalization operation 5 to each input, hidden state, and cell state in the model.
In the operation, /3 and ~y are trainable parameters that represent the resulting population mean and
variance of the outputs of the operation. A BN-LSTM is defined by the update equation.

f;
(})t = BN(Whht_l;’}/h,ﬁh) “V‘BN(Wth;’szBa:) +b (6)
t
g
ct = a(ft) Oci—1+ U(it) © tanh(ﬁt))
h;, = 0(615) O] tanh(BN(Ct; Ves Bc)) ®)

Unlike the LSTM weights and biases, the batch normalization statistics (e.g.]E(h) and \//zﬁr(h) are
not shared across LSTM cells. Instead, we have separate statistics per cell. We fix §;, and (3, to 0
because these parameters are redundant with b [2].

0.15 Mean of Recurrent Term 0.15 Mean of Qell State
\

0.10

0.05

0.00
| —o.05
~0.10

-0.15

1.2 Variance of Cell State

1.0

0.8
0.6
0.4

0.2

0.0

Time Steps

Figure 2: These plots show the effects of the batch normalization operation. The leftmost plots
show the means and variance of some columns of ¢; while the rightmost plots show the means and
variances of some columns of BN (c1; 7., 8.) across inputs during the first few training iterations.
~ was initialized to 1 and § was initialized to 0.

3.3 Padding and Bucketing

Inputs for sentiment analysis include phrases and words of varying lengths. We use padding and
bucketing techniques to handle such inputs.

We first pick a bucket size ¢;,. The bucket number n,(z) for a given input x of length £(x) is given by
¢(x) divided by ¢, (discarding the remainder). We next build an LSTM of length N = max,, £(x)-£}.

We collect input batches x1, ..., x5 with np(z1) = ... = ny(xpr), then pad them with NAW (“Not
A Word”) tokens so that the results each have length n, (1) - £,. We provide these as inputs into the
first ny (1) - £, LSTM cells, feeding zero inputs into the remaining LSTM cells. We only consider
the LSTM hidden states for the ny(z1) - Z‘bh cell in computing the softmax cross-entropy loss. This
is an example of a many-to-one architecture.

For our training set, we had N = 55, so we used a bucket size of 5.

3.4 Other Considerations

We use a word embedding matrix to convert one-hot word vectors into word vectors with lower
dimensionality. Sequences of these word vectors corresponding to input phrases and sentences are
inputs to the BN-LSTM The output of the LSTM is fed into an affine layer followed by a softmax
classifier with a cross-entropy loss function.

We observed exploding gradients while training the BN-LSTM so we clip our gradients to [—1, 1].
We use {5 regularization and 50% dropout (on the hidden states) to reduce overfitting.

4 Experiment

We used the approximately 9000 sentences in the training split of the Stanford Sentiment Treebank
dataset and a 20% sampling of the labeled sub-sentence phrases with length greater than 5 words
as the training data for our model. We validated (and tuned hyperparameters) in the dev split, and
we tested on the sentences in the test split, we first trained a vanilla LSTM with the following
hyperparameters:

Hyperparameter Value

Bucket size 5

Batch size 200
Embed size 32
Hidden size 20
Learning rate 0.01

{5 regularization 0.03
Dropout 0.5

Figure 3: Hyperparameters for the vanilla LSTM.

This network resulted in a test accuracy of 0.3543. We next trained a BN-LSTM with the following
hyperparameters:

Hyperparameter Value

Bucket size 5

Batch size 200
Embed size 32
Hidden size 20
Learning rate 0.01

{5 regularization 0.04
Dropout 0.5

Figure 4: Hyperparameters for the BN-LSTM.

This network resulted in a test accuracy of 0.3170. The following plots show the training and
validation loss, the training and validation accuracy, and the testing precision and recall:

Loss
ORRERREPNN
ooNBPO®ON
/

Accuracy

0 5 10 15

B Precision
=3 Recall

Very Negative Negative Neutral Positive Very Positive

Figure 5: Results for the vanilla LSTM.

Loss
EREENNINNDW
NBO0ONPORO

Accuracy

0 5 10 15
Epoch

EE Precision
0.8 B Recall

Very Negative Negative Neutral Positive Very Positive

Figure 6: Results for the BN-LSTM.

4.1 Discussion

We were able to coarsely tune the hyperparameters for the vanilla LSTM. We can see from the loss
plot that overfitting is still an issue. The hyperparameters for the BN-LSTM were set to be similar to
those for the LSTM so that we can make comparisons between the two models. Again, overfitting
is an issue. In the vanilla LSTM, SGD converges at around the 15" epoch, after which the training
and validation losses and accuracies stay fairly constant. We increased the regularization for the
BN-LSTM, since it has a few more model parameters than the vanilla LSTM, and an increased
number of model parameters can induce overfitting. In the BN-LSTM, it looks like SGD converges
at around the 3™ epoch, after which the training and validation accuracies stay fairly constant. The
training and validation losses bounce around even after the accuracies converge. We’re not sure why
this is occurring. Next, because we only tuned hyperparameters for the vanilla LSTM, it has better
testing performance than the BN-LSTM. In theory, batch normalization should not have too much
of an effect on final accuracy.

From the precision and recall plots, we see that both architectures have low recall for the very
negative and very positive classes. This implies that both classifiers are reluctant to classify inputs
as either of the extreme classes. This could be in response to the unbalanced nature of the dataset; it
has more neutral examples than examples belonging to the extreme classes.

4.2 Future Direction: Bidirectional LSTM

We additionally implemented a bidirectional LSTM with /5 regularization and an embedding matrix
of word vectors that are shared by the forward and backward LSTMs. This implementation was
motivated by the hypothesis that the sentiment classification could be improved by context words
before and after the current input. However, this model failed to meet classify well; it consistently
classified test examples as positive. We suspect the likely causes to be omitting the bucketing step
and considering only the final hidden states of each of the LSTMs for softmax classification. Future
work therefore includes rectifying these two points and re-evaluating the bidirectional LSTM with
and without batch normalization.

5 Conclusion

We implemented and tuned a vanilla LSTM and implemented a batch-normalized LSTM (BN-
LSTM), with the batch normalization variant from [2], for a 5-class sentence-level sentiment analysis
task on data from the Stanford Sentiment Treebank. We were able to get a test accuracy of 35.4%
with the vanilla LSTM, and we were able to show that batch normalization does indeed improve
the training efficiency of the LSTM model. For comparison, the table below shows the performance
of recent deep neural models on the sentiment analysis task, including the state-of-the-art DMN [5]
architecture, which attains 52.1% test accuracy.

Model Test Accuracy

MV-RNN 44.4
RNTN 45.7
DCNN 48.5

PVec 48.7

CNN-MC 474
DRNN 49.8

CT-LSTM 51.0

DMN 52.1
LSTM 35.4
BN-LSTM 31.7

Figure 7: Test accuracies for the 5-class sentiment classification task on the Stanford Sentiment
Dataset [5]. Our results are shown in bold.

Looking at the state-of-the-art performance, it’s evident that this is a difficult classification prob-
lem. We are not convinced that BN-LSTM will outperform vanilla LSTM to any noticeable degree.
However, combined with other LSTM optimizations such as CT-LSTM [7], a tree-structured LSTM,
batch normalization can lead to a near-state-of-the-art deep neural model for sentiment classification
with a significantly higher training speed.

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available from tensor-
flow.org.

[2] Tim Cooijmans, Nicolas Ballas, César Laurent, and Aaron Courville. Recurrent batch normal-
ization. CoRR, abs/1603.09025, 2016.

[3] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[4] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[5] Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter
Ondruska, Ishaan Gulrajani, and Richard Socher. Ask me anything: Dynamic memory networks
for natural language processing. CoRR, abs/1506.07285, 2015.

[6] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng,
and Christopher Potts. Parsing With Compositional Vector Grammars. In EMNLP. 2013.

[7] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representa-
tions from tree-structured long short-term memory networks. CoRR, abs/1503.00075, 2015.

