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Abstract

Research in cognitive neuroscience has identified neural activity correlated with
subjects hearing an unexpected event in a musical sequence. However, there is a
lack of models attempting to explain how these computations are carried out in the
human brain. Using an augmented data set consisting of music from the western
tradition (originally 371 Bach chorales), we trained a Long Short-Term Memory
(LSTM) and two Recurrent Neural Network (RNN) architectures to ask: will a
neural network show a larger perplexity when presented with an unexpected event
in a musical sequence? Could this higher perplexity highlight similar computa-
tions carried out by the human brain? Our results indicate that our methods to train
different neural network architectures with a corpus of music were effective. Per-
plexity values for the LSTM architecture reached low values in the order of 50.
Visualization of the TSNE-reduced chord embedding matrix showed separation
toward the edges common chords in our vocabulary compared to less common
ones. Moreover, perplexity for an unexpected chord in an otherwise well-formed
chord sequence was larger compared to an expected chord, but not as large as
we originally hypothesized. Finally, out of all the architectures we trained, the
clockwork RNN was the one less prone to overfitting the data, and the one that
generated the most sensical chord progressions after training. Our results show
a promising path moving toward the development of a neural network model of
musical structure processing and expectationﬂ

1 Introduction

Similar to language, music is a universal element of the human condition. Because of its orga-
nized nature, all humans exposed to music implicitly learn the hierarchical dependencies connecting
events in music, even if they do not explicitly receive formal musical training [[1]. Research in neu-
roscience shows that all humans are able to identify events that violate common structures in music.
Recently, Romén and Fujioka found evidence showing that humans with different levels of musical
training group musical sequences in structures that follow or violate local and global dependencies
[2]. However, there is a lack of models explaining the underlying computations taking place in the
brain when humans listen to sound events unfolding in a musical sequence. Our goal is to develop
such a model explaining how humans analyze unexpected events in music which elicit surprise. We
use the term surprise to encompass the perceptions of subverted expectation, a sense of musical
novelty, or the notion of a “wrong” or out-of-place note or chord.

A recurrent neural network (RNN) can carry out such a task. RNNs can develop expectations in
sequences, relying on information about recent events and hence the structural dependencies in mu-
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sical sequences. Such an approach is similar to language models in the domain of natural language
processing. After training, such a model could recognize unexpected events in a musical sequence
in a manner similar to humans. Additionally, the network can generate musical sequences after
training, demonstrating the abstractions it has learned from the data on which it was trained.

2 Background

Cognitive neuroscience provides evidence about how humans process sequences of events through
time [3]], how sensory and cognitive priming lead to the construction of mental representations of
musical events [4]], and how the life background of an individual affects expectation when listening
to a sequence of musical events [5]. Inspired by this evidence, Berger and Gang [6, (7,18} 9] hypothe-
sized and developed a computational model consisting of simple recurrent networks, among others,
able to parse musical sequences of events and develop expectations after training.

More recently, Rabovsky [[10] revisited the work by McClelland et al. [11]] on computational mod-
elling of language cognition. Rabovsky found that McClelland’s model, similarly to other models
by Frank [12] for semantic processing, feature large activations in the second hidden layer when pre-
sented with semantic violations. Such semantic violations are also known to elicit specific patterns
of brain activity in humans, as measured by EEG [10].

Our interests are more aligned with syntax (structure) processing than semantics and thus we be-
lieve that Rabovsky’s architecture will not serve our purposes. Instead an RNN, similar to and
building upon the work by Berger and Gang, will be our architecture of choice. Thus, considering
the structural similarities between music and language, we built a language model trained on musi-
cal structures that shows larger perplexity when stimulated with unexpected events that violate the
syntactic rules underlying musical flow.

3 Approach

The methods described here allowed us to train an RNN on a corpus of music that consists of se-
quences of chords. Our data is analogous in structure to language, since chords are discrete events,
similar to words, and sequences of chords form musical phrases, similar to how words in language
form sentences. Thus, the dependencies between simultaneous chords in our data-set will be cap-
tured by the weights in the hidden modules of our Neural Network architectures.

3.1 Data Set

We obtained a data-set consisting of all four-voice chorales by Johann Sebastian Bach in the Hum-
Drum digital format. This corpus of music contains musical features that are common in western
music, and should capture the musical abstractions that individuals in the western world are exposed
to since an early age. Bach was an iconic composer from the 18th century. He wrote pieces that
set the stylistic foundations for composers of classical music. Among Bach’s oeuvre, his chorales
(371 pieces in four voices: bass, tenor, alto, and soprano) are an influential body of music sharing
multiple features with western music from other composers and other eras. Bach chorales consist
of four different but simultaneously sounding voices. These voices coexist in separate pitch ranges
(bass, tenor, alto, soprano). For en example of this musical texture, see the fragment in figure E}
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Figure 1: The beginning of a Bach chorale.



3.2 Data Preparation

In western music there are 12 different pitch classes within an octave. We parsed Bach chorales by
concatenating four octaves (one for each voice) in a 48-dimensional vector (12 dimensions for each
of the voices). Thus, a 48-dimensional row vector corresponds to the sonority produced by the four
simultaneously sounding voices at a point in time. Since rhythm in music can make these chords
sound repeatedly for an extended period of time, repeated row vectors indicate a chord lasting longer
than the shortest unit of musical subdivision we chose, which turned out to be an eighth note. Fig. 2]
shows our parsed representation of the fragment from Fig.

Our original data set only contained 370 chorales, all in the same key of C major. In order to expand
our data set, we used a standard method from music theory to augment our musical material called
“transposition.” Transposing a piece changes the reference pitch that defines the “tonic” of the piece.
After carrying out data augmentation, all twelve pitches in the set served as tonic for each of our
chorales. This data augmentation procedure expanded our data set by a factor of 11.

Thus, in both our original and augmented data-sets, a “word” is each of the time-step vectors (48
dimensional containing all voices sounding simultaneously), and a “sentence” is a sequence of these
row vectors unfolding over time to form an entire chorale.

Bach chorale example
t=1{1,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,0
t=2|1,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,0
t=3|1,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,0
t=4|1,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,0
t=5{o0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0, 1,0,0,0,0,0,0,0,0,0,0,0
t=6|0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0, 1,0,0,0,0,0,0,0,0,0,0,0
t=7{0,0,0,0,0,0,0,0,0,0,0,1, 0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0
t=8|o0,0,0,0,0,0,0,0,0,0,0,1, 0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0

Figure 2: The same Bach chorale snippet as in Fig.|1| encoded as concatenated length-12 row vectors
for each time-step, corresponding to the duration of an eighth note. The groups of 12 numbers
represent, from left to right, the bass, tenor, alto, and soprano.

3.3 Neural Network Architectures

Our experiments focused on two flavors of feed-forward recurrent neural networks, the LSTM (see
§3.3.1) and the Clockwork RNN (see §3.3.2). In both architectures, we take each chord (i.e. the
“word” as described in and learn an embedding matrix such that each unique chord is repre-
sented as a vector in our input space.

331 LSTM

We use a multi-layer LSTM architecture. For practical computational reasons, our experiments
consisted of versions with two LSTM layers, as is depicted in Figure[3] For each LSTM layer, we
may characterize the computation by the following equations. Equations [T}4] define what are known
as the input gate i(*), forget gate f*), output gate o*), and new memory cell &*).

i® — (Wu)x(t) Ly h(H)) (1)
L (W(f)x(t) 4 U(f)h(t—l)) )
o®) — & (W<o>x<t> Ly h(H)) 3)
& = tanh (W(C)z(t) + U<C>h<H>) 4)

Note that o denotes the sigmoid function, o(z) = (1 + efz)_l. The superscripts () denote the
index of the current time step. Using the above equations, we can compute our final memory cell,

M = O ot 4 ;1) o z®) (5)
where o denotes the Hadamard product. Finally, our hidden state is
") = o® o tanh (c(t)> ) (6)



The new memory &%) and hidden state h(*) are passed along for use in computing the subsequent
time step (¢ -+ 1) values, and the hidden state 1(*) is passed forward to serve as input to the next layer
in the current time step ¢ (i.e. the next LSTM layer or the output layer).

Thus, there are eight learned matrices in each LSTM layer: four each of the W () and U() matrices
in Equations[T}4] For our implementation, we initialize these matrices with a uniform random zero-
mean distribution. The size of the distribution (i.e. the maximum absolute value of any element) is
a tunable hyperparameter.

The system includes gradient norm clipping in order to prevent exploding gradients. Gradient norm
clipping was first introduced by Pascanu, Mikolov, and Bengio [13]], and prevents exploding gra-
dients (and thus exploding stochastic gradient descent training) by clipping gradients whose norms
exceed a certain threshold. This threshold in our case is a tunable hyperparameter.
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Figure 3: The two-tiered LSTM architectureE] layers with different time steps 7;. In this fig-
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“Note that the LSTM layers in the dia-

3.3.2 Clockwork RNN

Another neural network architecture we trained was the clockwork RNN (cwRNN) [14]. The
c¢wRNN is in essence a standard RNN, but has hidden layers whose weight matrices get updated
at different time steps. A diagram of this model is depicted in figure 4, The different time steps
for each hidden layer allow this architecture to learn both long-term and short-term dependencies
in the sequential data that it is trained on. Moreover, in the cwRNN a given hidden layer with time
step T receives information from another hidden layer with time step T, if 7; < Tj. This allows
faster hidden layers to capture information about the large-scale dependencies in the data that slower
hidden layers learn.

The computation of the state in this cwRNN at every time-step is given by the expression:

Y = frWa -y~ + Wy -2

y(ot) = fo(Wo - 3%

where the subindices I, H, and O, indicate elements in the input, hidden, and output layers. x(t)
is the input of the network, and f describes activation functions for the hidden and output layers
of the network. However, only the rows and columns in W; and Wy for hidden layers that suffice
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t MOD T; = 0 get updated at time step ¢. Thus, the matrices W and W have g rows, but matrix
Wi is a block-upper triangular matrix with

)

Wer = {WHi for (t MOD T;) =0

H=30 otherwise
The implementation of our clockwork RNN, is a modification of the text-specific cwRNN model in
the theanets packageE] The theanets implementation of this cwRNN is an implementation
following the description in the original paper [14]. Our implementation differs mainly from the
original in that the text was originally parsed so that each letter corresponds to a time-step, while
our model requires text to be treated on a word-by-word basis, where each sequential chord in our
data corresponds to a time step.

4 Experiments and Results

To test our architectures, we carried out different experiments with the LSTM and the clockwork
RNN architectures previously described. All code is available at the following git repository:
https://cm-gitlab.stanford.edu/tsob/musicNet/.

41 LSTM

All LSTM experiments were run using TensorFlow 0.8.0 on a machine running Fedora Linux (Planet
CCRMA), and utilizing an NVIDIA GeForce GTX 750 (1.2935 GHz) using the cuDNN 4 and
CUDA 7.5.18 libraries.

Our best-performing model was trained on the aforementioned 370 four-part Bach chorales. The
training set consisted of 70% of this corpus, or 259 chorales; the validation set consisted of another
10%, or 37 chorales; and the test set consisted of the final 20%, or 74 chorales. With data augmen-
tation via transposition of each chorale to each of the twelve possible keys, we have 3108, 444, and
888 chorales for the training, validation, and test sets, respectively.

The initial scale for our trainable tensors was 0.05,
which means every element was randomly assigned a
value between —0.05 and 0.05. The size of our chord /—|_ o permiay
embedding vectors and our hidden states was 400, and 3300 — validation perplextty
the vocabulary size was 10000. 3000

4000 Trainin: hlstcfy‘

2500

The learning rate, using vanilla minibatch stochastic z
gradient descent, was 1.0, which decayed by a factor 8
of 0.8 after epoch 6 until the final 39th epoch. Batches e

plexity

2000

Pes

of 20 were used. The gradient norm threshold, for clip- 1000

ping, was 5. During training, we applied dropout at 500

a probability of 50%. The training history, plotted in 0 —_— e |
Fig.[5] shows an orderly optimization trajectory. fooch

We plot a t-SNE representation [15] of the chord em- Figure 5: LSTM training history.

beddings in Fig. [§] All except one of the annotated

chord types are triads, and we chose to highlight the most common four-part voicings — namely,
those in which the bass note is the root, the root is repeated in an upper voice, and no chord notes
are omitted. The dominant G7 chords, on the other hand, include all voicings with a G in the bass,
but allow for the omission of the 3rd or 5th in order to double the root in an upper voice and retain
the 7th.

For simplicity, we present the embedding matrix from a system trained on non-augmented chorale
data, all of which were normalized to have a tonic of C. Thus, for example, the green C majors may
tend to represent the major I chord of a chorale, though of course modulations within a chorale were
not altered, so the function of C major may be different in a modulated context.

2theanets is available at thefollowing repository: https: //github.com/lmjohns3/theanets
*http://ccrma.stanford.edu/planetccrma/software/
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Figure 6: A t-SNE visualization of LSTM chord embeddings, with several chord types labeled.

What strikes us as interesting is that the annotated chords cluster at the edges, though different
voicings of the same chord may appear far apart. Voicings of C major and G major or G dominant 7
sometimes appear in close proximity. This was at first surprising, given that the tonic and dominant
serve quite distinctly different harmonic functions; on the other hand, tonic and dominant chords are
highly likely to appear next to each other in sequence, for example at cadences or to establish key.
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Figure 7: Perplexity per time step (top) for three input sequences (bottom, represented as stacked
piano rolls for each of the four voices).

We present the responses of our trained model to three different test signals in Fig. [/l Fig.[7a|shows
the perplexity per eighth-note time step (top signal) for a progression that unfolds normally until
an abrupt cacophony of every note at every subsequent time step. This is akin to resting one’s arm
across all the keys of a piano. As expected, we see higher perplexity in that region of the progression.
Interestingly, the perplexity subsides quickly, spikes back up, and then subsides more slowly. We
conjecture that this results from the fact that, although this is indeed a surprising chord to hear, the



fact the it repeats every time step is a similar gesture to other, more sensical, chord progressions with
drawn-out chords. However, we would like to see a much larger spike in perplexity, corresponding
to the jarringly surprising nature of the musical event represented.

Fig. [7b| shows a progression which follows all rules of tonal harmony and counterpoint. Thus, we
would expect to see minimal perplexity. However, there are some spikes in perplexity similar in
magnitude to the previous example. We may note that the third chord is an A minor, serving as a
deceptive cadence (since it comes after C major and then the G dominant 7). This is not novel and
certainly occurs in the model’s training set, but as the name implies, the deceptive cadence continues
to subvert expectation and surprise human listeners even though they have heard deceptive cadences
many times before. As such, a higher level of model perplexity for that instant is somewhat desirable
and “correct.”

Finally, Fig.[7c|shows a perfectly fine harmonic progression except for the penultimate chord. This
chord, known as a Neapolitan, was seldom used by Bach in his chorales. Thus, we would expect a
higher level or perplexity around this event, and indeed we see it.

4.2 cwRNN

Using a subset of the augmented data (4000 chords total, separated into 3000 for training and 1000
for validation), we trained three different models: an RNN, an LSTM, and a clockwork RNN to
assess their performance on our dataset. After training, all models were able to generate chord
progressions, which varied in structural features.

Training History
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Validation History
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%0 - Istm

clockwork
85 \

5 10 15 20 25 30
Training Epoch

Figure 8: The top panel shows the loss function for the training set across epochs. The bottom panel
shows the loss function for the validation set. The clockwork RNN is the one that was less prone to
over-fitting the subset of data it was trained with.

All models were able to over-fit the data (see Figure @) but the clockwork RNN was the one with a
lesser tendency to do so, as seen in the loss functions for the validation set. This is consistent with
previous findings associated with the clockwork RNN architecture when trained on sequences of
events. The clockwork RNN architecture is designed to see beyond short-term dependencies, which
are usually the ones that a standard RNN model can capture due to the vanishing gradient problem.
In the clockwork RNN, connections from hidden layers with slower time periods to ones with faster
ones let this architecture capture relationships in longer time scales.

Finally, we made the cwRNN generate music after it was trained. Figure[I0]contains the output for
this experiment. The chorale reflects the style of the data on which it was trained. Considering it
was trained on the augmented data set, it makes sense that this excerpt modulates among different
keys and makes use of sophisticated harmony. These features were not observed when a chorale was
generated by the ordinary RNN trained on the same data-set, as shown in Figure 9]
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Figure 9: Chord progression generated by an RNN after training. The harmony is incoherent, and
seems to move pseudo randomly. There is no clear key and the style and rules of music theory are
not followed.
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Figure 10: Chord progression generated by the cwRNN after training. The harmony is sophisticated,
and follows the rules of music composition and style from the period of the data on which the model
was trained.

5 Conclusion

We have seen that recurrent networks, including LSTMs and clockwork RNNss, are suitable for mod-
eling time-sequences of musical data. The language-model approach, in which we use instantaneous
prediction error as a proxy for a human listener’s surprise, appears to bear fruit, pending further test-
ing and refinement. The clockwork RNN appears to perform best at musical tasks, in resistance
to overfit and the generation of musically sophisticated harmonic progressions. This makes sense,
as a hallmark of music is the presence of elements and motives varying over different time scales
simultaneously.

With our initial reults, as well as the newly available quantitative measures of human listener surprise
[2]], ideas for future work are manifold and exciting. In addition to prediction error, we would like
to look more closely at hidden-layer activations per time step, as they may also yield information
relevant to surprise levels.

We hope to continue working on the cwRNN, since it has a musically desirable architecture and
generated such interesting music. Beat and rhythm are an emergent property of these models, per-
haps especially with the cwRNN; we would like to explore this further, e.g. by tuning the cwRNN
time scales and/or concatenating explicit thythmic information to the chord representation.

In the near term, we may scrutinize the embedding matrices more closely to see if there is musically
significant local structure. For example, similar to analogies in NLP, perhaps the vector representa-
tions of dominant minus tonic are roughly equal. That is, G7 — C maj ~ A7 — D maj. That
and other analogies may help us confirm that the learned embeddings are musically meaningful.
Additionally, we may refine the embedding matrix by initializing not randomly, but according to a
heuristic such as circle of fifths relationships.
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