

Predicting Words from their Description

Troy O’Neal 1
Stanford University 2

CS224D 3
SUNET: toneal 4

 5

Abstract 6

We attempt to predict words from phrases that describe them. This task is 7
motivated by automatic summarization and the various work on matching 8
descriptions to images, as well as intrinsic curiosity of the author. Since 9
this appears to be a novel task without an existing state-of-the-art, we 10
explore neural network models ranging from the extremely basic up through 11
models of medium complexity in an attempt to glean the difficulty of the 12
problem. Models were trained on a mixture of Princeton Wordnet and 13
Webster’s Unabridged Dictionary. An attempt was made to compensate for 14
the relatively small number of training examples per class by leveraging the 15
similarity metric built in to GloVe pretrained vectors. Over the models 16
tested, the best performance was obtained by averaging a phrase’s 17
distributed word vectors and feeding that into one-hidden-layer neural 18
network. This trained network achieved a test accuracy of 28% on a 19
vocabulary size of 100, and an accuracy of 2.9% on a vocabulary size of 20
4000. While low in an absolute sense, these results greatly outperform 21
random guessing and a simple cosine similarity model. 22

 23

1 Introduction 24

Words can be powerful entities. For example, consider the word “squirm”, or “skyrocket.” 25

Any given word is capable of succinctly encoding layers of meaning, emotion, and 26

connotation. In NLP today, it is accepted practice to encode words as numerical vectors. 27

However, when we humans wish to explicitly communicate representations of words, we use 28

descriptions, of which dictionary definitions are a special case. Very little existing work 29

focuses on the nature of the relationship between words and their “human summaries”: 30

descriptions. This project aimed to explore this relationship. We can divide the relationship 31

into two directions. The first is generating a description given a word, and the second is 32

predicting a word given its description. This project focuses on the latter task, which should 33

be much easier. For example, given the statement “a small to medium-sized primate that 34

typically has a long tail,” our system should output a probability distribution with a high 35

value for “monkey”. 36

 37
Figure 1. The problem under study 38

 39

2 Background 40

This task as proposed appears to be novel, but has significant relationships to existing tasks 41

in NLP and machine learning. 42

 43

2 .1 Auto ma t ic Su mma riza t io n 44

The problem of identifying words from their definition is similar in a sense to automatic 45
summarization, in that we are taking a group of words and mapping them to a smaller group 46
of words. Kageback et al. (2014) discuss automatic summarization and were one of the first 47
to apply distributed word vector representations and deep learning to the problem. They 48
used Word2Vec vectors, recursive neural nets, and cosine similarity to measure similarity 49
between sentences. This provided the inspiration to use cosine similarity for zero-shot 50
learning. In this project, techniques from zero and one-shot learning are applicable since we 51
have so few examples for each class. 52

 53

2 .2 Ze ro a nd One -Sho t Le a rning 54

Socher et al. (2013) discusses an approach to zero-shot learning of image categories. They 55
use a separate “novelty” variable to switch between classifiers for seen and unseen classes. 56
To determine whether an example is seen or unseen, an outlier detection function is applied 57
based on a Gaussian prior. In this project, the zero-shot model (fuzzy) did not use separate 58
classifiers for seen versus unseen, rather, a single classifier attempted to a predict a “fuzzy” 59
distribution over the vocabulary based on similarity in the GloVe vector space. It was hoped 60
that the similarity relationships encoded in GloVe were enough to enable generalization of 61
the model. Fei-Fei et al. (2006) discuss one-shot learning as applied to image classification. 62
Their approach involves learning new categories based on prior distribution of model 63
parameters learned from old categories. Although much of their analysis is image -specific, 64
the rough analogue of their prior distribution is the Glove pretrained distributed vector 65
representation. Romera-Paredes and Torr (2015) provide a summary of zero-shot learning 66
and provide an approach that learns both unseen classes and the mapping between seen and 67
unseen classes. Applying their approach of learning the mapping between seen and unseen 68
might have yielded a better similarity metric than the one used. 69

 70

2 .3 Lo ng Sho rt -Ter m M e mo r ies 71

Hochreiter and Schmidhuber (1997) first described Long Short -Term Memories (LSTMs). 72
LSTMs are used to mitigate the vanishing and exploding gradient problem when training 73
long recurrent neural networks. Since definitions could reach 20 words or more, an LSTM 74
model was thought to be appropriate. 75

 76

3 Approach 77

Before any of the trainable models were conceived, a simple non-trainable baseline of cosine 78
similarity between average GloVe vector and the entire vocabulary was run. This yielded an 79
accuracy of just 0.06%. This extremely low number provided an initial baseline and 80
suggested that the task was hard. More models were then set up for the main experiments. 81

There were two overall experiments done. The first was to train a softmax classifier based 82
on various underlying neural network architectures using test words that were seen in 83
training. The second was to explore a classifier that could handle test words that were 84
unseen in training. 85

For the first experiment, named classical, there were five primary architectures tested. 86
These models mostly serve to explore and see how hard the problem is. Each of these 87
architectures accept a definition as input and produce a softmax probabilit y distribution over 88
the vocabulary. The first two architectures are toy structures, meant to be used as a trivial 89
baseline. The third architecture consists of a simple linear projection. The fourth 90
architecture consists of a one-hidden-layer neural network. The fifth and final architecture 91
uses LSTMs. The details of the various architectures are now provided. 92

3 .1 M o de l s 93

The first architecture, named random, outputs a uniform probability distribution over the 94
vocabulary. This model served as a trivial baseline. 95

The second architecture, named toy-bias, consists of a simple trainable bias vector. This 96
served to find the prior distribution of the outputs. Where represents all trainable 97
parameters, 98

The third architecture, named glove-mean-linear, consists of an average of the input Glove 99
vectors fed through a single linear projection layer. Where is the number of words in the 100
input, and is the Glove word vector at word index , and is the mean of the Glove 101
vectors. 102

The fourth architecture, named glove-mean-deep, consists of an average of Glove vectors fed 103
into a one-hidden-layer network. 104

 105

Figure 2. glove-mean-deep architecture 106

The fifth and final architecture, named lstm, consists of a recurrent LSTM model which 107
accepted a sequence of Glove words from the input. A single linear projection layer is then 108
applied to the LSTM cell’s output, where the output is taken from the cell corresponding to 109
the last word of the input. For a input definition of length (and is the output of LSTM 110
cell) this architecture computes 111

 112

Figure 3. lstm architecture 113

 114

3 .2 Lo ss 115

For the preceding five architectures, loss is standard cross entropy loss between the correct 116
word (the one-hot vector), and the prediction . 117

The second experiment, named fuzzy, attempted to learn unseen words using a non-standard 118
model. When learning from zero, one, or very few examples per class, a standard softmax -119
based classifier will have poor generalization performance. However, it should still be 120
possible to learn in this situation. For example, we should be able to learn definitions for 121
“gorilla” if we have learned a definition for “monkey” and we know that “monkey” is 122
similar to “gorilla”. In our case, GloVe encodes similarity information between words. To 123
implement this, we use techniques from one-shot and zero-shot learning. The basic idea is 124
to create conceptual supercategories, such as in (Salakhudinov 2012), each of which has 125
output classes as (potentially fuzzy) members. To evaluate whether an input example 126
belongs to a class, we evaluate the example’s membership in the supercategory and the 127
class’s membership in the supercategory and make a prediction from that. This requires 128
some sort of similarity metric between classes (words) and supercategories (which we use 129
here loosely to refer to regions in the distributed word vector space). In this project, model 130
fuzzy used a cosine similarity metric between a target class (word) and the rest of the 131
distributed word vector space. This meant that definitions were trained to match to not only 132
the target word, but all words close to the target. Since in this model is no longer a 133
mutually exclusive probability distribution, squared loss was used instead of CE loss. When 134
 is the distributed (not one-hot) representation of the correct word, we compute 135

To generate , in theory any of the preceding five architectures could be used, however the 136
one-hidden-layer neural network was selected to evaluate fuzzy. 137

 138

4 Experiment 139

 140

4 .1 Da ta se t 141

For both classical and fuzzy, the primary dataset is a aggregation of two dictionaries, the 142
Webster’s Unabridged Dictionary (early 1900s) from Project Gutenberg [7], and the 143
Princeton Wordnet dictionary (2006) [8]. Synonyms were treated by aggregating all 144
definitions under the same word key. Wordnet has 60k words and 102k distinct definitions. 145
Websters Unabridged has 95k words and 244k distinct definitions. To reduce computational 146
cost, the top 10k most common words (as determined by GloVe) were intersected with the 147
words in each dictionary. This preprocessing led to a final combined vocabulary of 4411 148
words, for which there are 66930 distinct definitions. This meant that there were 15.2 149
training examples, on average, per word. Each training example consists of a (definition, 150
word) tuple. Pretrained word vectors, used as fixed distributed representations of the 151
definitions, are GloVe 6B, 100 dimensional (from Socher et. al. [9]). 152

 153

4 .2 Tra in ing a nd t e s t sp l i t 154

To generate the training data, 80% of the aggregate dataset was randomly sampled. 155
Validation and test data was randomly sampled as the remaining 10% and 10% respectively. 156
For the limited-vocabulary instances, the aggregate dataset was filtered by a se t of 157
randomly sampled words before the train/test split. The same dataset split was used for both 158
classical and fuzzy. If fuzzy was successful on this split, we planned to create a train/test 159
split that included unseen words in the test set, a much tougher learning problem. 160

 161

4 .3 Hy perpa ra meters 162

For all models, a fixed learning rate of was used, a dropout rate of , and a L2 163
regularization constant of . For the one-hidden-layer network, 100 hidden units were 164
used. These values were selected based on informal experimentation, and were not 165
optimized in any formal way. Training was performed using standard gradient descent, and 166
continued for each model until the author noticed a qualitative plateau in validation accuracy 167
over multiple epochs. 168

 169

4 .4 Ev a lua t io n 170

Accuracy of the trained models on the test set was measured. F1 score could have been 171
used, but was not due to this project mainly being exploratory in nature. The lack of F1 can 172
be justified by noting that there is a baseline model (toy-bias) that accounts for learning the 173
prior output distribution. 174

 175

5 Results 176

 177

5 .1 c la ss i ca l 178

 179

Figure 5. Primary results. 180

The results obtained for the full dataset () demonstrate accuracy significantly 181
greater than random, especially for glove-mean-deep. It is noted that toy-bias also 182
performed significantly better than random, which is indicative of a skewed training 183
distribution (i.e., some words contain many more definitions than others, and are thus 184
overrepresented in the training data). However, we also note that glove-mean-deep 185
significantly outperforms toy-bias, indicating that learning is indeed taking place. The 186
success of glove-mean-deep over glove-mean-linear implies that the decision boundaries 187
within the distributed word vector space are complex and nonlinear. The failure of lstm was 188
surprising, since due to its complexity, it was initially hypothesized to be the model that 189
could most accurately capture the meaning of the input. While training lstm, we noted its 190
ability to overfit more strongly than all the other models. However, increased regularization 191
and dropout did not help lstm validation performance. The reason for the failure of lstm is 192
suspected to be the LSTM’s need for an amount of training examples far larger than used 193
here. 194

 195

5 .2 fuzzy 196

 197

 fuzzy Best
classical
accuracy

V=4000 0.09 2.9

V=100 21 30

V=20 41 41

Figure 6. fuzzy results and comparison to classical. 198

The results for fuzzy were not as high as hoped, even with the original training split. 199
Although the accuracy is comparable to classical for limited vocabulary sizes (and, it should 200
be noted, better than random and toy-bias), performance on the full vocabulary () 201
was abysmal. The additional complexity of trying to learn a non-mutually exclusive 202
distribution appears to have introduced too much noise into the system to be of use, although 203
the precise reason for failure warrants further investigation. 204
 205

6 Conclusion 206

The problem of predicting words from their descriptions appears to be, at the very least, non -207
trivial, although we venture that it is fairly difficult. The best “first -pass” approaches did 208
not yield satisfying accuracy, although they did significantly outperform guessing. Inherent 209
difficulties include handling synonyms, which introduce complex boundaries over the input 210
space. In addition, even the best-written definitions cannot possibly encode all relevant 211
connotative and contextual word information. 212

 213

6 .1 Future Wo r k 214

To improve the results obtained here, one should obtain more definitions per word, and thus 215
more training examples, by utilizing commercial dictionaries. This should allow for the 216
successful training of complex models like LSTM. Other models might also be tried, such 217
as recurrent neural networks on a parse tree of the definition, all the way up through 218
extremely new models like dynamic memory networks. Such complex models should be 219
able to better learn the meaning of the input phrases, especially when given many more 220
examples per word. 221

The simplistic scheme used in this project of cosine similarity combined with squared loss 222
did not yield good zero-shot generalization performance. Different similarity metrics and 223
loss functions should be investigated to continue the goal of learning about multiple words 224

from a single definition. 225

 226

References 227

 [1] Kageback et al. Extractive Summarization using Continuous Vector Space Models. 228
Proceedings of the 2nd Workshop on Continuous Vector Space Models and their 229
Compositionality. 2014. 230

[2] Socher et al. Zero-Shot Learning Through Cross-Modal Transfer. NIPS. 2013. 231

[3] Fei-Fei et al. One-Shot Learning of Object Categories. IEEE Transactions on Pattern 232
Analysis and Machine Intelligence. 2006. 233

[4] Romera-Paredes and Torr. An embarrassingly simple approach to zero-shot learning. 234
Proceedings of the 32

nd
 International Conference on Machine Learning. 2015. 235

[5] Hochreiter and Schmidhuber. Long Short-Term Memory. Neural Computation. 1997. 236

[6] Salakhutdinov, Tenenbaum, and Torralba. One-Shot Learning with a Hierarchical 237
Nonparametric Bayesian Model. JMLR: Workshop and Conference Proceedings. 2012. 238

[7] Webster’s Unabridged Dictionary. Project Gutenberg. 1996. 239
<http://www.gutenberg.org/cache/epub/673/pg673.txt> 240

[8] Princeton University "About WordNet." WordNet. Princeton University. 2010. 241
<http://wordnet.princeton.edu> 242

[9] Pennington, Socher, and Manning. GloVe: Global Vectors for Word Representation. 2014. 243

 244

