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Abstract

Caption generation has long been seen as a difficult problem in Computer Vision
and Natural Language Processing. In this paper, we present an image captioning
model based on a end-to-end neural framework that combines Convolutional Neu-
ral Network and Recurrent Neural Network. Critical to our approach is a ranking
objective that attempts to add discriminatory power to the model. Experiments on
MS COCO dataset shows that our model consistently outperforms its counterpart
with no ranking objective, both quantitatively based on BLEU and CIDEr scores
and qualitatively based on human evaluation.

1 Introduction

Being able to automatically generate captions for images is a fundamental yet challenging task that
connects Computer Vision and Natural Language Processing. One instance of its potential impact
is to help visually impaired people better understand the content of images. However, to achieve
a satisfying result, not only should the image captioning models be able to capture the key objects
and their features in the image, but they must also be powerful enough to generate descriptions that
capture their relations in a natural language.

Many pioneering approaches that address the challenges have been developed [4, 6, 16]. Most of
them use Convolution Neural Networks (CNN) to generate image features and Recurrent Neural
Networks (RNN) to generate natural language descriptions, and feature an end-to-end training of a
single joint model. However, these models are trained to maximize the log-likelihood of the target
description sentence given the training image, and tend to generate repetitive and overly general
captions without paying attention to the subtle differences between images. Figure 1 shows some
examples of repetitive captions generated by one of the state-of-the-art models described in [16].
Although the model is able to describe the scene in a very general way (i.e. ”A man and a woman
are sitting on a bench”), it fails to capture objects that differ across images.

In this paper, we describe an image captioning model that is able to generate more discrimina-
tory captions for similar images. Inspired by the alignment model described in [6], we propose a
novel ranking objective that encourages aligned image-sentence pairs to have a higher score than
misaligned pairs by a margin

2 Related Work

Several methods have been proposed for the task of image caption generation. Most of these methods
are based on Recurrent Neural Networks, inspired by the successful use of sequence-to-sequence
training with deep recurrent networks in machine translation [1, 2, 15].
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Figure 1: Examples of repetitive captions for different images.

The first deep learning method for image captioning was proposed by Kiros et al. [9]. The method
utilizes a multimodal log-bilinear model that is biased by the features from the image. Kiros et al.
[10] extends this work by proposing a method that allows both ranking and caption generation. Mao
et al. [12] replaces the feed-forward neural network with a recurrent neural network. Vinyals et
al. [16] used a LSTM (Long short-term memory) network, which is a refined version of a vanilla
recurrent neural network. Unlike Mao et al.’s and Kiros et al.’s models, which feed in image features
at every time step, in Vinyals et al.’s model the image is fed into the LSTM only at the first time step.

Unlike the above works that represent image as a single feature vector, Karpathy et al. [6] learn
detectors for several visual concepts and train a model that generates natural language descriptions
of images and their regions. Xu et al. [17] propose approaches to caption generation that attempt to
incorporate a form of attention with either ”hard” or ”soft” attention mechanism.

Contributions Aiming to generate more discriminatory captions, we propose a novel ranking ob-
jective (elaborated in 3.2) on top of the end-to-end neural framework for image caption generation,
which enforces alignments between images and generated captions.

3 Technical Approach

3.1 Overview

In this project, we propose a novel ranking objective on top of the end-to-end neural framework for
image caption generation. We leverage an encoder-decoder approach: The Convolutional Neural
Network encoder transforms the images into some fixed-length image feature vectors, which is then
fed into the Recurrent Neural Network decoder to generate the image captions. Aiming to generate
more discriminatory captions, we introduce a ranking objective that enforces the alignments between
images and generated captions and penalizes misaligned pairs. The overall architecture of our model
is shown in Figure 2.

3.2 Model Architecture

Image Model We use a Convolutional Neural Network (CNN) to extract image features. The 16-
layer VGGNet[14] pre-trained on ImageNet [3] is used as our CNN. It was the state-of-the-art model
in ImageNet Challenge 2014, and features a very small (3×3) convolution filters and simple config-
urations. We change the last 4096-dimensional fully connected layer into K-dimensional and extract
features from the last layer, where K is the size of word embeddings that are used as inputs to our
language model. Each image is thus represented as a K-dimensional feature vector Ii ∈ RK .

Language Model We use a Long Short-Term Memory (LSTM) network [5] as the building block
of our language model. As a particular form of Recurrent Neural Networks, LSTM is able to deal
with vanishing and exploding gradients, which is the most common challenge for vanilla RNNs.
The core of the LSTM is a memory cell c that encodes knowledge at every time step of what inputs
have been observed up to this step. The behavior of the cell is controlled by ”gates” – layers which
are applied multiplicatively and thus can either keep a value from the gated layer if the gate is 1 or
zeros this value if the gate is 0. More specifically, three gates are being used that control whether to
forget the current cell value (forget gate f ), if it should read its input (input gate i) and whether to
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Figure 2: Diagram of our discriminatory image captioning model. It consists of three modules:
image model, language model, and ranking model.

output the new cell value (output gate o). The definition of the gates and cell update and output are
as follows:

i(t) = σ(W (i)x(t) + U (i)h(t−1))

f (t) = σ(W (f)x(t) + U (f)h(t−1))

o(t) = σ(W (o)x(t) + U (o)h(t−1))

c̃(t) = tanh(W (c)x(t) + U (c)h(t−1))

c(t) = f (t) ◦ c̃(t−1) + i(t) ◦ c̃(t)

h(t) = o(t) ◦ tanh(c(t))

where ◦ represents the product with a gate value, and h(t) is the output hidden state at time step t.
The LSTM takes the image feature vector Ii as its first hidden state and a sequence of input vectors
(x1, ..., xD). It outputs a sequence of log probabilities at each time step:

y = {~y1, ~y2, ..., ~yD}, ~yi ∈ RM

where M is the size of the vocabulary and D is the length of the sentence.

Ranking Objective During training, at each forward pass, our model takes a mini-batch of N image-
sentence pairs. We use the dot product ITi sj to measure the similarity between the i-th image
and the j-th sentence. Intuitively, ITi si should be larger than any ITi sj(i 6= j) by a margin, as
we want to ensure that the generated sentence ’uniquely’ corresponds to the image, and thus add
discriminatory power to our model. The ranking model takes a batch of image features I ∈ RN×K

and corresponding log probabilities Y = { ~Y1, ~Y2, ..., ~YD}, ~Yi ∈ RN×M . We first transform log
probabilities into probabilities, as probabilities naturally express distribution over outputs:

P = exp(Y ) ∈ RD×N×M

We then use the probabilities as ”soft indices” to index into the same word embedding table as in
the language model to find each word embedding, and use another LSTM to learn corresponding
sentence embeddings:

S = {~s1, ..., ~sN}, ~si ∈ RN×K
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(a) Train vs. Validation Loss (b) Validation Scores

Figure 3: Quantitative Results (model0 stands for baseline model, model4 stands for our model)

where the LSTM takes each word embedding at each time step, and the sentence embedding is
represented as the output from the LSTM at the last time step. With a batch of image features and
corresponding sentence embeddings, we compute the similarity matrix as follows:

Sim(I, S) = S · IT ∈ RN×N

We then define the ranking objective over one mini-batch as the sum of max-margin loss over both
columns and rows:

J(Sim(I, S)) =
1

N

N∑
i=1

N∑
j=1

max(0, Sim[i, j]− Sim[i, i] + 1)+

1

N

N∑
j=1

N∑
i=1

max(0, Sim[i, j]− Sim[i, i] + 1)

This objective encourages aligned image-sentence pairs to have a higher score than misaligned pairs,
by a margin.

Training Our language model is trained to combine a word embedding (xt) and the previous hidden
state (ht−1) to predict the next word (yt). We set h0 to be the image feature vector and x1 to a
special START token. On the last step when xD represents the last word, the target label is set to
a special END token. The cost function is to minimize the negative log probability assigned to the
target labels (Softmax classifier):

L(I, Y ) = − 1

N

N∑
i=1

Yi

The total loss during training is defined as the weighted sum of the ranking objective and Softmax
loss:

Loss = wJJ(Sim(I, S)) + wLL(I, Y )

Test time At test time, we extract the image representation I , set h0 to I , x1 to the START token
and compute the distribution over the first word y1. We pick the argmax from the distribution, find
its word embedding as x2, and repeat this process until the END token is generated.

4 Experiments

4.1 Dataset

We train and test our model on the Microsoft COCO (Common Objects in Context) [11] dataset, a
large image dataset designed for object detection, segmentation, and caption generation. There are
5 written caption descriptions for each image in MS COCO. For our task, we use the 2014 release
of the dataset, which contains 82,783 training, 40,504 validation, and 40,775 testing images. All the
words that occur less than 5 times are mapped to a special <UNK> token.
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Figure 4: Qualitative results. Green text indicates discriminatory captions, and red text indicates
errors.

4.2 Evaluation Metric

The most reliable metric for image captioning is based on human evaluations, which can take months
to finish and involve human labor that cannot be reused. Moreover, choosing a human-like evalu-
ation matric is a challenging problem for image captioning. In this work, we perform extensive
experiments on our model with several metrics to evaluate the effectiveness of our model. The
BLEU Score [13] is one of the most common metrics in image description tasks, which is a form of
precision of word n-grams between generated and reference sentences. We report BLEU-4 as it is
the standard in machine translation (note that BLEU-n is a geometric average of precision over 1- to
n-grams). Besides BLEU, we also use METEOR and Cider, which are two popular metrics that are
deemed to be appropriate for evaluating caption. [15].

4.3 Baseline Model

We use the model from NeuralTalk2 [7] as our baseline model. NeuralTalk2 is a Torch implemen-
tation of the ”Show and Tell” model [16] which shares the same image model and language model
as ours but does not apply the ranking objective. The pretrained 16-layer VGGNet [14] is used as
the image model, with a learning rate of 1× 10−5. For the language model, both word embeddings
and LSTM hidden states have 512 dimensions. The initial learning rate for the LSTM is 4 × 10−4,
which decays every 50000 iterations. We clip gradients when they exceed 0.1, and use a dropout of
0.5. For both the image model and the language model, the batch size is set to 16. We use the Adam
optimizer [8] with α = 0.8 and β = 0.999. The model is trained for 10 epochs (around 75000
iterations).

4.4 Our Model

We train our model for 10 epochs with the same set of hyperparameters for the image model and the
language model. For the ranking model, we use a learning rate of 10−5 and the RMSProp optimizer
with α = 0.8. In particular, we initialize the weight wJ for ranking loss to 10−6 (Softmax loss
weight is set to 1), and double wJ every 5000 iterations. Intuitively, captions generated at initial
stages are mostly random. We make wJ larger and enforce the ranking loss more strongly when the
generated captions start to make more sense.

4.5 Results

To show the effectiveness of the ranking model, we train our model and the baseline model (which
does not include the ranking loss) using the same set of hyperparameters. We trained both models
for 10 epochs (around 75,000 iterations). The loss and the validation scores have not fully converged
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due to the limitation of computing power. We also cross-validate these models with different set of
hyperparameters, and our model outperforms the baseline model consistently.

Quantitative Results Most of the existing models fail to capture the subtle differences of similar
images, and this is due to the lack of discriminatory power in evaluation metrics. Therefore, we do
not expect a significant boost in validation scores on these flawed metrics. We visualize the results
in the following graphs: figure 3a shows the training and validation cross entropy loss, and figure 3b
shows BLEU/METEOR/Cider scores on validation results. Note that there is an 8% increase (from
0.6 to 0.65) in CIDEr score, which indicates that the ranking model not only helps generate more
discriminatory captions, but also increases the overall performance.

Qualitative Results As seen in figure 4, our model generates more descriptive and differentiable
captions compared to those from the baseline model. In particular, our model is able to capture less
salient objects and context such as ”laptop”, ”skateboard”, and ”dog”.

5 Conclusion

From the qualitative results, we can see that our ranking objective does add discriminatory power
to the model. However, our model doesn’t show significant improvement quantitatively. Things we
would like to explore in the future:

• In the ranking model, replace the LSTM net with a Bidirectional LSTM net for learning
sentence embedding.

• Instead of having randomly selected images in each batch, we can put similar images in the
same batch. The ranking objective should be more effective in this case because there is no
need to further push down the misaligned image-sentence pairs if all the images are very
different.

• Add an adversarial objective that enables the model to generate captions with a distribution
closer to ground truth captions.

6 Miscellaneous

This is a joint project with CS231A (Computer Vision: from 3D reconstruction to recognition).
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