Exploring the Depths of Recurrent Neural Networks
with Stochastic Residual Learning

Sabeek Pradhan Shayne Longpre
Department of Computer Science Department of Computer Science
Stanford University Stanford University
sabeekp@cs.stanford.edu slongpre@cs.stanford.edu
Abstract

Recent advancements in feed-forward convolutional neural network architecture
have unlocked the ability to effectively use ultra-deep neural networks with hun-
dreds of layers. However, with a couple exceptions, these advancements have
mostly been confined to the world of feed-forward convolutional neural networks
for image recognition, and NLP tasks requiring recurrent networks have largely
been left behind. In this paper, we apply two recent innovations in ultra-deep con-
volutional networks, ResNets and stochastic depth, to RNNs used for sentiment
classification. We also add a new innovation, stochastic timesteps, which is simi-
lar to stochastic depth but over horizontal timesteps rather than vertical layers. We
achieve classification accuracies on the five class, fine-grained Stanford Sentiment
Treebank that are very close to state of the art, without using the parse tree infor-
mation utilized by current SOTA methods. We believe that these results bode well
for the potential of ultra-deep networks in recurrent and NLP settings in addition
to their existing uses in feed-forward and computer vision ones.

1 Introduction

Recent advancements in feed-forward convolutional neural network architecture have unlocked the
ability to effectively use ultra-deep neural networks with hundreds of layers. For many applications,
these ultra-deep networks have outperformed shallower networks by remarkable margins, such as
Microsofts ResNet [3] in the 2015 ImageNet Competition. Our objective is to apply a selection
of these state-of-the-art deep network techniques to recurrent neural networks (RNNs) and to the
task of natural language processing (NLP), in particular sentiment analysis. Traditionally, RNNs are
shallow across layers, instead obtaining their depth across timesteps. We anticipate our modifica-
tions to the traditional RNN architecture will increase the depth capacity of these networks, thereby
permitting the training of more complex and potentially higher performing models. Our motivation
stems from the potential insights new architectures could yield in the application of deeper recurrent
neural networks.

The specific combination of techniques we are applying to the basic Recurrent Neural Network in-
clude ResNets [3] and Stochastic Depth networks [4] over network layers as well as over timesteps.
We will evaluate our modified networks accuracy and depth capacity against that of (a) traditional
stacked RNNss, (b) syntactic tree-structured models, and (c) present state-of-the-art sentiment clas-
sification models. The Stanford Sentiment Treebank (SST) dataset has been thoroughly used for
benchmarking a variety of high-performance RNN models, and is thus an apt choice.

2 Related Work

Ultra-deep networks are a relatively new innovation. One of the first mainstream ultra-deep archi-
tectures was Highway Networks [9]. That architecture used an LSTM-inspired gating mechanism
that would allow information to flow mostly unmodified across many layers of a feed-forward con-
volutional neural network, similar to the way LSTMs allow information to flow mostly unmodified
across many timesteps. There have already been attempts to adapt this architecture to recurrent net-
works, most notably [11], which uses a very similar gating mechanism to train LSTM networks up
to 8 layers in depth and achieve state of the art performance on speech recognition tasks.

However, undoubtedly the most famous ultra-deep architecture, and the one from which we take the
heaviest inspiration, is the ResNet architecture introduced in [3], which also won the 2015 ILSVRC
competition. Rather than use a sophisticated but complex gating mechanism to determine how
much of a layers information should be passed on unmodified to the following layers, ResNets use
a parameter-free approach. Each layer learns a residual which is added to the layers input and then
passed as the input to the next layer. More formally, if the input to a layer (or group of layers)
is = and the output of that layer (or group of layers) is F'(x), then the input to the next layer (or
group of layers) is « + F'(x), whereas it would be F'(x) in a conventional neural network and
D(z) x z + (1 — D(z)) x F(x) for some function D(x) in a highway network.

An even more recent innovation on this framework is stochastic depth networks [4], which randomly
drops layers from the ResNet architecture while training. This approach allows the test-time network
to serve as an ensemble of shallower ResNets, the same way Dropout allows the test-time network
to serve as an ensemble of smaller networks more generally. Stochastic depth has yielded both
accuracy and training time improvements over ResNets on the CIFAR and SVHN datasets.

3 Models

3.1 Long Short Term Memory Cell

All our models incorporate a standard Long Short Term Memory (LSTM) cell within the given re-
current neural network framework. While we have the opportunity to substitute this element with
Gated Recurrent Units (GRU) [1] and Coupled Input-Forget Gate (CIFG) cells [2] we felt that lim-
iting the scope to LSTMs was a suitable choice given (a) its consistent performance across models,
and (b) the fact that this decision is unlikely to affect our core investigation.

In figure 1 below we have the standard LSTM representation. The mathematical formulae can be
read at [2].

3.2 Vanilla Deep/Stacked LSTM

Our vanilla stacked LSTM acts as a baseline comparable for our own model variations. In Figure
2 we have a visual representation of 2 timesteps and 3 LSTM layers followed by a fully connected
projection layer. While a basic and ubiquitously used model, it has proven highly performant with
few layers and is thus a high standard for a sentiment analysis baseline. We also use this model at
a greater number of layers to compare its performance over layer ranges as compared to our model
variants.

3.3 Residual Recurrent Neural Networks

Our Residual Recurrent Neural Network (Res-RNN) is configured with a minor change to how the
vanilla stacked LSTM computes an output for the subsequent layer. Only the first layer LSTM
(across all timesteps) remains unchanged from the vanilla model. This is because the first layer
needs to adapt the dimensionality to the hidden layer size from the input size, as well as learn the
initial representation that the later layers will leverage in computing their residuals. All additional
layers compute their outputs differently, applying residual learning as in the ResNet. Each layer
learns a residual to be added to the previous layer rather than a new representation altogether. This
greatly ameliorates the vanishing gradient problem and allows for far deeper networks to be trained.

L+1
e
1] Ct-1L /él\ ct'- t+1
FL It zt ol —
r1—f h it W ht t+1
X"

Figure 1: An individual LSTM layer

In particular, if the input to layer [at timestep ¢ is xil), the previous hidden and cell states for layer

[from timestep ¢ — 1 are hglll and cgljl, respectively, then hgl) and cgl) are calculated using the

normal LSTM equations, and the input to layer [+ 1 at timestep ¢ is xgH'l) = xgl) + hgl).

The residual addition is visually represented in the figure 2.

3.4 Stochastic Depth

Stochastic Depth, which uses the ResNet architecture introduced above, randomly drops layers dur-
ing training. Since our LSTM layers are of equivalent dimensionality we can simply take the output
from one layer and feed it as the input not to the immediately succeeding layer, but the one beyond
that. For obvious reasons the fully connected layer and first LSTM layer after the input cannot have
stochastic depth applied to them.

The advantage of this technique is that it provides a Dropout-style ensemble of shallower networks
consisting of the undropped layers. See figure 3 for a visual representation, where the second layer
is dropped, as depicted in shaded red.

3.5 Stochastic Timesteps

Stochastic Timesteps is the term we have given to applying stochastic depth over timesteps rather
than layers. This simply consists of randomly dropping omitting timesteps (a word in the input
sentence) during training. The shaded red zone in figure 3 represent the dropped timestep. For
our implementation we eliminated the possibility of ever dropping the first word/timestep. This
is a convenient fix to prevent empty inputs when stochastic timesteps happens to trigger on every
timestep of a small input sentence.

We believe the advantage of this technique is that it helps train a model more robust to incomplete
or superfluous language.

4 Technical Approach

4.1 Dataset

The Stanford Sentiment Treebank dataset [8] has been heavily curated, and recently been used for
benchmarking high performance sentiment analysis models, such as in [5], [6], [10], and others. The
dataset contains 11855 sentences labelled for sentiment between 1.0 and 0.0 inclusively. We chose
to focus our attention to the 5 class sentiment labels, which classified sentences as very negative
(0.0-0.2), negative (0.2-0.4), neutral (0.4-0.6), positive (0.6-0.8), or very positive (0.8-1.0). The
provided sentences are also split into labelled sub-phrases to make them conducive for syntactic
tree models. We trained our model on all train sentences and sub-phrases derived from these train
sentences, totalling 166,743 training phrase examples. The validation and test sets, however, contain

o Yiel Vi Vi

hz(S) hz+1(3)
ht_l(s) n® h:+1(3) h, o

@ h,, o
ht—l @ h}(:) hr+1 @ hr_1 ?)

ht(l) ht+1 o
¢y 0 e ¢ O
hH“)_'-T’-_'hm(n ht "

-1

X1

Figure 2: The normal stacked LSTM (left) and Res-RNN (right) architectures

Y

V1

Xer1

X

3
By
|
Cre1
@
N
Cre1
(0]
o

Figure 3: Res-RNN with stochastic depth (left) and stochastic timesteps (right)

el ®

@

(O]

| Method | Accuracy |

Res-RNN 50.6%
Res-RNN Stochastic Timesteps 50.5%
Res-RNN Stochastic Depth 49.5%
Vanilla Stacked LSTM 49.1%
Benchmarks from Tai, Socher and Manning 2015
Constituency Tree-LSTM 51.0%
Deep Recursive Net 49.8%
Paragraph Vector 48.7%
Dependency Tree-LSTM 48.4%

Table 1: Model Comparables

| Model Type | Num Layers | Hidden Units [Accuracy |
Res-RNN 2 80 50.6%
Res-RNN (57 = 0.5) 4 160 50.5%
Res-RNN 12 160 49.7%
Res-RNN (SD = 0.75) 12 120 49.5%
Res-RNN (5D = 0.75) 4 160 49.5%
Res-RNN (SD = 0.75) 4 120 49.5%
Res-RNN 6 120 49.3%
Res-RNN (SD = 0.75) 2 80 19.0%
Res-RNN 6 160 49.1%
Vanilla Stacked LSTM 4 120 49.1%

Table 2: Ranked Results

solely full sentences, consisting of 1101 and 2210 examples respectively. In evaluating our models
over 5 class sentiment and only on the full, complex sentences (excluding their sub-phrases), we are
maximizing the difficulty of the task at hand.

4.2 Hyperparameters and Training Details

We kept a number of hyperparameters consistent between the models, which we mostly got [10].
We used word vectors of dimensionality 300. Where possible, we used Glove vectors pretrained
on 840 billion tokens, and for words in the dataset that did not appear in the Glove vocabulary, we
randomly initialized every element of the word vector using a random uniform distribution from
-0.05 to 0.05. Our optimizer was Adagrad with a learning rate of 0.1 for the word vectors and 0.05
for all other weights. To defend against overfitting we used L2-regularization at le-4 and dropout
at 0.5. Lastly, we used a batch size of 128 (in contrast to [10], who used batches of 25), and our
training stop condition was a maximum of 10 epochs or 2 consecutive epochs without improvement
in validation loss.

For preliminary model optimization we ran grid search over the model types, number of layers (2, 4,
6, 12), hidden units (80, 120, 160), and for Res-RNN models, stochastic timesteps (0.5, 0.75, 0.9).
For our stochastic depth model, we kept the probability of keeping a layer at 0.75.

5 Results

Our experiments consisted of running grid search as described in the Hyperparameters and Training
Details section. We ranked our best models based on the SST 5 class sentiment classification test
accuracy. Table 1 shows our best models against comparable near-SOTA models.

Table 2 comprises our top 10 ranked test accuracies on the SST 5 class sentiment classification. Note
that SD denotes Stochastic Depth and ST denotes Stochastic Timesteps.

Vanilla RNN Epoch Loss

4 Layers Train
4 Layers Val

2 Layers Train
2 Layers Val

12 Layers Train
12 Layers Val
6 Layers Train

6 Layers Val

0.8
0

Figure 4: Training and val losses for vanilla (left) and Res-RNN (right) networks for 2, 4, 6, and 12

layers

Epochs

Res-RNN Epoch Loss

4 Layers Train
4 Layers Val

2 Layers Train
2 Layers Val

12 Layers Train
12 Layers Val
6 Layers Train
6 Layers Val

0.8
0

Epochs

Res-RNN Stochastic Depth Epoch Loss

4 Layers Train
4 Layers Val

2 Layers Train
2 Layers Val

12 Layers Train
12 Layers Val
6 Layers Train

211 - 6 Layers Val
5
10
0.9
0.8
[1 2 3 6 7 8 9

Figure 5: Training and val losses for stochastic depth (right) networks for 2, 4, 6, and 12 layers

6 Conclusion

As shown in our results tables, both ResRNN and stochastic depth over layers allowed for large
improvements in test accuracy compared to the best Vanilla RNN models. Indeed, our two best
Res-RNN models got within 0.5% of state of the art, which is especially notable considering that the
SOTA Constituency Tree-LSTM method takes into account the explicit parse tree of the sentence
while the ResRNN was only given the raw sequence of words. In addition, as Figures 4 and 5 show,
while Vanilla networks were unable to reduce even their training loss as the number of layers rose,
both ResRNN and stochastic depth were, confirming a key result from [3].

There are a couple puzzles which we intend to explore in greater depth. First, test accuracy for
ResRNN and stochastic depth models does not appear to be a consistent function of model depth;
indeed, our best performing model was a 2 layer ResRNN, which would seem too shallow to fully
reap the rewards of the residual architecture. Another is the high performance of stochastic timesteps
when dropping half the words while training, which seems too likely to drop important words. And
finally, [3] and [4] both found that deeper ResNets or stochastic depth networks worked best when
narrower (i.e. with fewer hidden units), which is the not the case with our data. Further testing will
hopefully shed some light into these issues.

6.1 Future Work

One potential extension of our work would be to try stochastic depth training using Highway Net-
works (first pioneered by [9] and then applied to LSTMs by [11]). Currently, the recurrence in our
LSTM is not modified to reflect the fact that each layer learns a residual rather than an altogether
new representation; another extension might thus be to modify the recurrence relation in a manner
similar to Zhang et al. 2015. Since stochastic depth should itself be a form of regularization, one
could investigate in more detail whether they overfit less than normal ResRNNs do, and whether
they can avoid overfitting even without L2-regularization or dropout. Finally, one could test this
architecture on other tasks, such as speech recognition or music modeling, to ensure that the results
are generalizable to other areas that RNNs and LSTMs are commonly used for.

References

[1] Chung, Junyoung, et al. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555 (2014).

[2] Greff, Klaus, et al. LSTM: A search space odyssey. arXiv preprint arXiv:1503.04069 (2015).

[3] He, Kaiming, et al. Deep Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385 (2015).

[4] Huang, Gao, et al. Deep networks with stochastic depth. arXiv preprint arXiv:1603.09382
(2016).

[5] Kim, Yoon. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014).

[6] Le, Quoc V., and Tomas Mikolov. Distributed representations of sentences and documents. arXiv
preprint arXiv:1405.4053 (2014).

[7] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei.
(* = equal contribution) ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.

[8] Socher, Richard, et al. Recursive deep models for semantic compositionality over a sentiment
treebank. Proceedings of the conference on empirical methods in natural language processing
(EMNLP). Vol. 1631. 2013.

[9] Srivastava, Rupesh K., Klaus Greff, and Jrgen Schmidhuber. Training very deep networks. Ad-
vances in Neural Information Processing Systems. 2015.

[10] Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. Improved semantic representa-
tions from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075
(2015).

[11] Zhang, Yu, et al. Highway Long Short-Term Memory RNNs for Distant Speech Recognition.
arXiv preprint arXiv:1510.08983 (2015).

	Introduction
	Related Work
	Models
	Long Short Term Memory Cell
	Vanilla Deep/Stacked LSTM
	Residual Recurrent Neural Networks
	Stochastic Depth
	Stochastic Timesteps

	Technical Approach
	Dataset
	Hyperparameters and Training Details

	Results
	Conclusion
	Future Work

