
Question Answering Using Deep Learning

Eylon Stroh
SCPD Student

maestroh@stanford.edu

Priyank Mathur
SCPD Student

priyankm@stanford.edu

Abstract

With advances in deep learning, neural network variants are becoming the dom-
inant architecture for many NLP tasks. In this project, we apply several deep
learning approaches to question answering, with a focus on the bAbI dataset.

1 Introduction

Question answering (QA) is a well-researched problem in NLP. In spite of being one of the oldest
research areas, QA has application in a wide variety of tasks, such as information retrieval and entity
extraction. Recently, QA has also been used to develop dialog systems [1] and chatbots [2] designed
to simulate human conversation. Traditionally, most of the research in this domain used a pipeline
of conventional linguistically-based NLP techniques, such as parsing, part-of-speech tagging and
coreference resolution. Many of the state-of-the-art QA systems – for example, IBM Watson [3] –
use these methods.

However, with recent developments in deep learning, neural network models have shown promise for
QA. Although these systems generally involve a smaller learning pipeline, they require a significant
amount of training. GRU and LSTM units allow recurrent neural networks (RNNs) to handle the
longer texts required for QA. Further improvements – such as attention mechanisms and memory
networks – allow the network to focus on the most relevant facts. Such networks provide the current
state-of-the-art performance for deep-learning-based QA.

In this project, we study the application of several deep learning models to the question answering
task. After describing two RNN-based baselines, we focus our attention on end-to-end memory
networks, which have provided state-of-the-art results on some QA tasks while being relatively fast
to train.

2 Data

There are two main varieties of QA datasets, which we shall refer to as open and closed datasets. In
open QA datasets, the answer depends on general world knowledge, in addition to any text provided
in the dataset. The Allen AI Science [4] and Quiz Bowl [5] datasets are both open QA datasets. In
closed QA datasets, all information required for answering the question is provided in the dataset
itself. The bAbI [6], CNN / Daily Mail [7] and MCTest [8] datasets are all closed QA datasets.

While open QA datasets more closely illustrate the kinds of problems encountered by real-world
QA systems, they also involve a significant amount of information retrieval engineering in addition
to the question-answering system. Thus, in order to focus on the task at hand, we chose to use closed
QA datasets for this project.

bAbI is a set of 20 QA tasks, each consisting of several context-question-answer triplets, prepared
and released by Facebook. Each task aims to test a unique aspect of reasoning and is, therefore,
geared towards testing a specific capability of QA learning models.

1

The bAbI dataset is composed of synthetically generated stories about activity in a simulated world.
Thus, the vocabulary is very limited and the sentence forms are very constrained. On the one hand,
these limitations make bAbI an ideal dataset for a course project. On the other hand, they raise ques-
tions about the ability to generalize results on bAbI to QA in a less tightly controlled environment.

In addition to the story, the context includes pointers to the relevant supporting facts, the sentences
within the story that are necessary for answering the question. This allows for strongly supervised
learning, where the supporting facts are provided during training, as well as the more common
weakly supervised learning, where training makes use of the story, question and answer, but does
not use the supporting facts.

The bAbI dataset is available in English and Hindi. The data for each language is further divided
into two sets, one with 1,000 training examples per task and one with 10,000 training examples per
task. For this project, we only consider the English data and, following the literature, focus on the
smaller en subset rather than the larger en-10k subset.

MCTest is a data set created by Microsoft. Similar to bAbI, it provides information about context,
question and answer. For MCTest, these are fictional stories, manually created using Mechanical
Turk and geared at the reading comprehension level of seven-year-old children. As opposed to bAbI,
MCTest is a multiple-choice question answering task. Two MCTest datasets were gathered using
slightly different methodology, together consisting of 660 stories with more than 2,000 questions.
MCTest is a very small dataset which, therefore, makes it tricky for deep learning methods.

Related work: Hermann et al. [7] apply attention mechanisms to the CNN and Daily Mail datasets.
Weston et al. [6] use memory networks [9] to achieve state-of-the-art results with strong supervision
on the bAbI dataset. Kumar et al. [10] improve on some of these results using dynamic memory
networks. Sukhbaatar et al. [11] apply end-to-end memory networks to achieve state-of-the-art
results with weak supervision on the bAbI dataset.

3 Approach

3.1 The baseline models

We created two baseline models: one using an existing example built with Keras and TensorFlow
and one written directly in TensorFlow using seq2seq.

GRU model using Keras: In this model, we generate separate representations for the query and
the each sentence of the story using a GRU cell. The representation of the query is combined with
the representation of each sentence by adding the two vectors. The combined vector is projected to
a dense layer D ∈ RV . The output of the model is generated by taking a softmax over layer D.
Hence, all answers, including comma-separated lists, are encoded into the vocabulary as tokens.

Figure 1: GRU baseline

The GRU/Keras model was significantly inspired by and reused several components from the code
[12] and blog post [13] by Steve Merity on his experimentation with bAbI dataset. It leverages the

2

implementation provided by the Keras library on top of a TensorFlow backend. We trained two
models on each data set split (en and en-10k). Each task was trained separately but used the same
set of hyperparameters. This model generally performed about as well as the baseline LSTM from
[6], significantly exceeding it on tasks 7 (Counting), 8 (Lists/Sets) and 16 (Basic Induction).

Sequence-to-sequence model: One shortcoming of the first baseline is that the answer is treated as
a single word. However, for bAbI tasks 8 (Lists/Sets) and 19 (Path Finding), answers are given as
comma-separated lists, suggesting that a sequence-to-sequence model [14] might be useful.

Figure 2 illustrates how a sequence-to-sequence network can be trained on a question answering
task. First, an RNN encoder processes the story, followed by a special question-start symbol (Q),
and then the question. Then, the special GO symbol tells the network to start decoding, with the
decoder’s initial state being the final state of the encoder. The decoder produces an answer sequence,
followed by the special STOP symbol that indicates that processing must end. The network is trained
using cross-entropy error on the decoder output, as compared with the correct answer sequence.

Figure 2: Sequence-to-sequence baseline: training (left); validation / testing (right)

During training, the decoder also receives the correct answer as input following the GO symbol.
During validation and testing, the correct answer is not provided: we only provide the GO symbol.
At subsequent steps, the output of time step t is fed to the decoder as the input at time step t+ 1.

We implemented the sequence-to-sequence model using GloVe [15] word vectors, TensorFlow GRU
cells and the TensorFlow seq2seq library. We also trained the model on all tasks combined,
separating by task only for testing purposes. Interestingly, while this approach often underperformed
relative to our other baseline, it tended to do well on tasks with yes/no questions. In particular, the
performance on task 18 (Size Reasoning) was much closer to the strongly supervised SOTA models
than to the other weakly supervised baselines.

3.2 Dynamic memory networks

Dynamic memory networks with strong supervision provide state-of-the-art results on many of the
bAbI tasks [10]. We were therefore interested in implementing one for our project. Unfortunately,
even with one memory layer and no attention mechanism, our network was already too slow for
significant experimentation, so we did not finish building this model. Instead, we chose end-to-end
memory networks [11] as our model of choice for this project. However, for the sake of complete-
ness, we briefly describe our incomplete dynamic memory network in this section.

The network we constructed for bAbI has question and input modules similar those described in [10].
The answer module is a simple softmax layer: our early investigations with sequence-to-sequence
models showed that we could use a softmax as a first-order approximation for tasks 8 and 19. The
episodic memory module is incomplete, running a simple RNN over a combination of the encoded
inputs and encoded question.

We also constructed a variant of the network for MCTest. The multiple-choice nature of MCTest
dictated a slightly different architecture than the one in [10]. In addition to encoding the question
and the story, we use an RNN to encode the multiple-choice answer. The encoded multiple-choice
answer is then combined with the encoded question using element-wise multiplication to produce
an encoding representing both the question and the given answer.1 Instead of cross-entropy softmax
loss, the output module for MCTest uses a max-margin loss function max(1 + si − sc, 0), where sc
is the score of the correct answer and si is the highest score among the three incorrect answers. The
scores are given by qaW1 +mW2 + b, where qa is the encoded question/answer pair and m is the
output of the simple RNN in the memory module.

1Had the MCTest line of inquiry shown more promise, we would have also added difference-based features.

3

Our initial experiments with the incomplete network showed the model to overfit the training set
strongly even in the presence of significant L2 regularization and dropout, achieving more than 99%
accuracy on the training set while peaking at around 38% accuracy on the validation set, far short
of the non-neural network MCTest baseline. The size of the MCTest dataset probably means that
manually created features are required for state-of-the-art performance. We thus focused on the
bAbI dataset for the remainder of the project.

3.3 End-to-end memory networks

An end-to-end memory network [11], as shown in figure 3, is a kind of memory network [9] which
uses simpler input feature maps and memory generalization steps than those used for dynamic mem-
ory networks. The simplification allows for faster training and a greater range of experimentation
within the scope of a course project. Furthermore, end-to-end networks have shown state-of-the-
art performance for weak supervision on the bAbI dataset. As we are interested in examining the
greater generalizability of the weak supervision use case, end-to-end memory networks present a
good choice for the main architecture for the project.

Sentence selection: End-to-end memory networks use a memory of fixed sizem, which is measured
in terms of the number of encoded sentences. The maximum number of sentences in a story varies
widely across bAbI tasks, ranging from two (for tasks 4 and 17) to 228 (for task 3). Thus, end-to-end
memory networks require a mechanism for converting the range of stories into memories of a fixed
size.

We zero-pad stories shorter than m sentences. For cases where the story is longer than m sentences,
we tried two approaches: Recency, where the last m sentences from the story are stored in the
memory and earlier memories are simply discarded, and Jaccard similarity, where the m sentences
most similar to the question are stored in the memory, in the order in which they appear in the story.2

Four tasks exceeded our default memory size of 50. Jaccard similarity performed better than recency
on all of these tasks, providing small improvements on tasks 5 and 8, as well as improvements of ten
percentage points on task 2 and 23.4 percentage points on task 3. We therefore use Jaccard similarity
in our model. However, both these approaches are static, which means we may be able to improve
on them by learning query similarity parameters during training. We discuss this extension to the
model in section 5.

Figure 3: End to end memory network from [11]

Input representation: Once the story is converted to the memory size, using padding or Jaccard
similarity as needed, the input to the model is a set of sentences x1, x2 · · ·xm and a question. Each
sentence is zero-padded to the maximum sentence length J , so that each xi is a matrix of size V ×J
with columns that are one-hot vectors.

2The Jaccard similarity of two sets A and B is |A∩B|
|A∪B| .

4

To encode the story, we use an embedding look up matrix A ∈ IRd×V . Thus, Axi ∈ IRd×J is
a representation of the words in the sentence in an embedding of size d. In order to convert this
representation to a representation of the entire sentence in IRd, we use the position encoding (PE)
scheme suggested in [11]: a matrix L ∈ IRd×J , where Lkj = (1− j

J)− (kd)(1− 2 j
J).

Position encoding assigns different weights to each word along each dimension of the embedding
using element-wise multiplication of the position encoding weight and the sentence embedding:
L� Axi. Each sentence is then converted into a memory mi ∈ IRd slot by adding up the weighted
values for all words in the sentence and adding a bias term corresponding to the temporal order of
the memory cells: mi =

∑
j [L�Axi]:j + [TA]:i. Unlike position encoding, the temporal encoding

weights in TA ∈ IRd×m are parameters that are learned during training.

The encoded query vector u ∈ IRd is created from the query using a separate embedding matrix
B ∈ IRd×V and position encoding. However, temporal encoding is not used for the query, as it
is a single vector which is not part of the temporally ordered memory. Using the story and query
representations, we compute the importance of each memory slot by taking a softmax over the dot
product of query with each memory slot: pi = softmax(uTmi).

The pi values are a form of attention over the input sentences. However, as they are softmax values,
they represent probabilities that add up to one, rather than independent case-by-case assessment of
the relevance of each sentence.

Output representation: In addition to input vector above, we also generate an output vector ci =∑
j [L�Cxi]:j+[TC]:i for each sentence by using an embedding matrix C ∈ IRd×V and a temporal

encoding matrix TC ∈ IRd×m. The final output o ∈ IRd from the memory module is then computed
as o =

∑
i pici. In case of a single-hop model – part (a) in figure 3 – we generate the final prediction

by simply computing â = softmax(W (o+ u)), where W ∈ IRV×d.

Multiple hops: When using multiple hops, we stack the memory layers as shown in part (b) of
figure 3. We use the layer-wise variant proposed in [11], where the A and C embeddings are the
same for all layers. At each layer after the first, the question input to the model is computed as
uk+1 = ReLU(Hok+uk), whereH ∈ IRd×d is a linear mapping. This makes the memory network
resemble a short RNN, moving up through memory hops rather than forward through individual
sentences.3

The final output of the network is then used to generate the final prediction: after k hops, we have

â = softmax(W (uk+1)) = softmax(W (ReLU(Hok + uk)))

4 Experiments

4.1 Implementation

Our end-to-end memory network is a modified version of Dominique Luna’s TensorFlow implemen-
tation [16]. This implementation includes code for gradient noise [17] that is not described in [11].
We kept the gradient noise code, as our results were slightly better with it than without it.4 The most
important modifications that we made were:

Per-task early stopping: We measure validation accuracy for each task separately for each epoch,
and use the test results from the best validation epoch for each task. There is no early stopping
mechanism in [16].

Regularization: We add L2 regularization for the embeddings A, B and C, the temporal encoding
matrices TA and TC , the linear mapping H , and the projection matrix W .

Jaccard similarity: The use of Jaccard similarity for selecting sentences for end-to-end networks is
an original contribution of this project.

3The original presentation of end-to-end memory networks in [11] discusses the similarity to RNNs but
does not include a nonlinearity in the calculation of uk+1.

4Though perhaps not better in a statistically significant way.

5

The advantages of using Jaccard similarity were mentioned above. We discuss the importance of
early stopping and regularization below.5 Overall, we matched the two perfect results from [16] and
exceeded the results on all other tasks, often by significant margins: 32.7 percentage points for task
10 and over 27 percentage points on tasks 3, 6 and 9.

4.2 Selecting the default values

Given the number of hyperparameters for the network, it was useful to establish default values to
use as the basis for experimentation. For the architecture, we set memory size m to 50 which, as
mentioned above, reduces the effects of sentence selection to only four tasks. We use three memory
hops, which have shown to add value for most tasks over one-hop and two-hop architectures. We
train the network jointly on all tasks, as this has proven to work better than independently training
for each task.6 Finally, following [11], we use a default embedding size d = 50. The embeddings
are initialized randomly but could conceivably be initialized with GloVe or other word vectors.

4.3 Initial tuning

The first thing we tuned was the Adam optimizer’s learning rate, α.7 We tuned the learning rate
based on training cost with no regularization; α = 0.001 is a good value. Further experiments
showed this value to be robust across different network layouts. We therefore took this value as
given for our experiments with other hyperparameters.

Next, we looked into early stopping based on validation accuracy. Given the difference between the
various bAbI tasks, average overall validation accuracy proved to be too coarse for early stopping,
benefiting some tasks at the expense of others. Thus, we measure validation accuracy for each task
for each epoch. We then record, for each task, the test accuracy for the epoch with the best validation
results for that particular task.8

4.4 Regularization

Once we set the default values and tuned the learning rate, we began to tune the model. By far, the
most important hyperparameter for tuning – aside from α – was the L2 regularization hyperparame-
ter, λ. We experimented with using no regularization, as well as with regularization values on a log
scale between 10−7 and 0.3.

Figure 4: Tuning L2 regularization

5We also introduced ReLU and untied the A and C matrices which were tied in [16] but not in any of the
variants proposed in [11]. However, we are not sure whether these changes resulted in significant improvements.

6See Table 1 in [11] for the advantages of three hops and joint training.
7We did not tune the Adam hyperparameters β1, β2 and ε.
8These are not necessarily the best test results for that task, but they are the best statistically valid test results,

since the early stopping decision is made without any knowledge of test accuracy.

6

It was important to tune λ separately for each task. Figure 4 shows the range of test accuracies for
different levels of regularization. Note that, for tasks 2 and 3, λ = 0.03 achieves far better results
than other values and, for task 15, performance varies considerably for different values of λ.

After tuning λ, we retrained the network using the combination of the training and validation sets
for training. Then, for each task, we examined the results for the previously tuned value of λ to see
whether the full retraining provided any benefit, which it did for tasks 2, 11 and 19.9

4.5 Results

Table 1 summarizes our results for α = 0.001, d = 50, m = 50 and three hops. For each task, we
compare our results to our baseline results, as well as to the state-of-the-art results with both strong
supervision (the better of [6] and [10]) and weak supervision (the best result among the models
described in [11]).

Task Keras (GRU) seq2seq Strong SOTA Weak SOTA Our Results
1: one supporting fact 51.8 39.0 100.0 100.0 99.6

2: two supporting facts 27.2 20.1 100.0 88.6 67.4
3: three supporting facts 19.9 24.8 100.0 78.1 57.6

4: two argument relations 66.3 57.3 100.0 97.8 98.4
5: three argument relations 59.4 38.2 99.3 89.0 83.1

6: yes/no questions 46.7 52.5 100.0 98.0 99.3
7: counting 79.0 57.0 96.9 89.9 85.8
8: lists/sets 76.4 35.9 96.5 93.9 91.8

9: simple negation 63.8 64.6 100.0 98.5 99.3
10: indefinite knowledge 47.1 47.9 98.0 97.4 95.7

11: basic coreference 75.1 52.8 100.0 99.6 97.5
12: conjunction 77.0 39.5 100.0 100.0 99.2

13: compound coreference 94.4 50.1 100.0 99.8 98.3
14: time reasoning 25.7 23.3 100.0 98.0 87.7

15: basic deduction 22.8 23.5 100.0 100.0 100.0
16: basic induction 47.9 32.2 100.0 97.3 48.0

17: positional reasoning 52.4 49.8 65.0 59.6 61.3
18: size reasoning 49.4 91.4 95.3 90.8 92.1

19: path finding 9.0 9.2 36.0 12.0 10.8
20: agent’s motivation 91.1 83.8 100.0 100.0 100.0

Table 1: End-to-end memory network test accuracy results. Results shown in bold meet or exceed
the existing state-of-the-art results for weak supervision.

4.6 Additional experiments

We ran several additional experiments on hyperparameter tuning: grid search on λ and embedding
size, grid search on λ and memory size, and tuning λ for networks with more than three hops. The
hope with these experiments was that increasing network capacity would allow the network to ”keep
facts in mind” for our poorly performing tasks (2, 3 and 16).

These experiments surprised us by having largely negative results. For 19 out of 20 tasks, the
experiments could not improve on the tuned results for the default values of d, m and number of
hops. Task 16 was the only task to benefit from these changes: test accuracy improved to 48.9 with
an embedding size of 75 and to 51.6 with a seven-hop network. These improvements were minor
compared with the shortfall in our performance on that task relative to the results reported in [11].

We also examined the effects of learning the weights L used for position encoding instead of using
the static position encoding described above. Doing so did not provide a significant difference in
performance.

9For statistical validity, we had to restrict ourselves to the previously tuned value of λ for each task. This
meant we had to rule out a perfect result on task 1 as statistically invalid, as it was achieved with a slightly
different value of λ.

7

4.7 Analysis

Figure 5 shows our results (blue bars) as compared with the existing weak state-of-the-art (solid
line). The tasks are arranged in increasing order of difficulty based on existing state-of-the-art. Our
model generally tracks the existing results for weak supervision. The exceptions are tasks 2, 3 and
16. Tasks 2 and 3 have stories longer than our memory size; while our Jaccard heuristic improves
on the recency heuristic, there is still room for improvement. For task 16, we are probably trapped
in a local minimum, an noted in [11].10

Figure 5: A visualization of the results

In addition, the figure shows end-to-end networks in the context of the strong state-of-the-art and
our sequence-to-sequence baseline (dotted lines). The more difficult the task, the more useful it is
to have supporting facts during training, as seen in the gap between the strong and weak SOTA. On
the other hand, for reasoning about position and size, the complexity of the model may not matter
very much: all results converge.

5 Future work

End-to-end memory networks have benefits such as relatively fast training and fewer parameters than
other memory networks, yet provide state-of-the-art performance for weakly supervised training on
the bAbI dataset. However, they have have a few shortfalls. We propose the following improvements
to the model to improve the performance of this architecture.

Attention: The attention model may be improved if we replace the softmax probabilities pi with an
attention model that treats sentences independently instead of normalizing as a mutually exclusive
probability distribution.

Memory formation: The Jaccard-based sentence selection schema can be replaced by a more in-
telligent sentence selection module with learnable weights. Such a module is likely to improve
performance on tasks 2 and 3, which are problematic for our model.

Further experimentation: bAbI is a small, closed and synthetic data set. To gauge the true power
of the model, further experimentation should be run using larger non-synthetic data sets, such as
CNN / Daily Mail.

10In that paper, the authors escaped local minima by starting training without the softmax layer (linear start).
We could not improve our results with our basic implementation of linear start, but we did not have enough
time to experiment with the linear start implementation details.

8

References

[1] Christopher Manning. Text-based Question Answering systems. http://web.
stanford.edu/class/cs224n/handouts/cs224n-QA-2013.pdf, p. 7.

[2] Silvia Quarteroni. 2007. A Chatbot-based Interactive Question Answering System. 11th
Workshop on the Semantics and Pragmatics of Dialogue: 8390.

[3] J. William Murdock, Guest Editor. 2012. This Is Watson. IBM Journal of Research and
Development 56 (3/4).

[4] Peter Clark and Oren Etzioni. 2016. My Computer Is an Honor Student – but How Intelligent
Is It? Standardized Tests as a Measure of AI. AI Magazine 37 (1).

[5] Jordan Boyd-Graber, Brianna Satinoff, He He and Hal Daume III. 2012. Besting the Quiz
Master: Crowdsourcing Incremental Classification Games. Empirical Methods in Natural
Language Processing (EMNLP), 1290–1301.

[6] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer,
Armand Joulin and Tomas Mikolov. 2015. Towards AI-Complete Question Answering: A Set
of Prerequisite Toy Tasks. arXiv:1502.05698.

[7] Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman and Phil Blunsom. 2015. Teaching Machines to Read and Comprehend.
arXiv:1506.03340.

[8] Matthew Richardson, Christopher J. C. Burges and Erin Renshaw. 2013. MCTest: A Chal-
lenge Dataset for the Open-Domain Machine Comprehension of Text. Empirical Methods in
Natural Language Processing (EMNLP), 193–203.

[9] Jason Weston, Sumit Chopra and Antone Bordes. 2015. Memory Networks. arXiv:1410.3916.

[10] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani,
Victor Zhong, Romain Paulus and Richard Socher. 2016. Ask Me Anything: Dynamic Mem-
ory Networks for Natural Language Processing. arXiv:1506.07285.

[11] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston and Rob Fergus. 2015. End-To-End Mem-
ory Networks. Advances in Neural Information Processing Systems (NIPS) 28.

[12] Merity, Steve. Keras, GitHub Repository Code.

[13] Merity, Steve. ”Question Answering on the Facebook BAbi Dataset Using Recurrent Neural
Networks and 175 Lines of Python Keras.” Web log post.

[14] Ilya Sutskever, Oriol Vinyals and Quoc V. Le. 2014. Sequence to Sequence Learning with
Neural Networks. arXiv:1409.3215.

[15] Jeffrey Pennington, Richard Socher and Christopher D. Manning. 2014. GloVe: Global Vec-
tors for Word Representation. Empirical Methods in Natural Language Processing (EMNLP),
1532–1543.

[16] Dominique Luna. MemN2N GitHub repository. https://github.com/domluna/memn2n

[17] Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach
and James Martens 2015. Adding Gradient Noise Improves Learning for Very Deep Networks.
arXiv:1511.06807

9

http://web.stanford.edu/class/cs224n/handouts/cs224n-QA-2013.pdf
http://web.stanford.edu/class/cs224n/handouts/cs224n-QA-2013.pdf
https://github.com/fchollet/keras/blob/master/examples/babi_rnn.py
http://smerity.com/articles/2015/keras_qa.html
https://github.com/domluna/memn2n

Supplementary Material

Figure 6: Tuning the learning rate

Figure 7: Grid search over embedding size and memory size vs regularization

Code

The base code for the memory networks was forked from [16] and is available on https://
github.com/priyank87/memn2n. This includes the code for the web demo discussed below.
In addition, the code for the baseline models and the incomplete implementation of dynamic memory
networks is uploaded to the Box site.

Demo

We worked on a web demo allowing us to test the model and visualize the memory probabilities in
each hop (episode). Below are a few examples that demonstrate it.

10

https://github.com/priyank87/memn2n
https://github.com/priyank87/memn2n

Task 1
Story
john went to the kitchen
daniel travelled to the kitchen
sandra journeyed to the kitchen
john went to the bedroom
mary went to the bedroom
sandra went back to the bedroom
john journeyed to the garden
daniel went back to the bedroom

Question
where is john

Figure 8: Example 1

Task 5
Story
john travelled to the bathroom
john moved to the kitchen
john grabbed the apple there
john went back to the hallway
mary went back to the hallway
john travelled to the bathroom
daniel moved to the office
mary went to the office

Question
is mary in the office

Figure 9: Example 211

Task 15
Story
sheep are afraid of cats
jessica is a sheep
mice are afraid of sheep
cats are afraid of sheep
wolves are afraid of mice
emily is a sheep
gertrude is a sheep
winona is a mouse

Question
what is gertrude afraid of

Figure 10: Example 3

12

	Introduction
	Data
	Approach
	The baseline models
	Dynamic memory networks
	End-to-end memory networks

	Experiments
	Implementation
	Selecting the default values
	Initial tuning
	Regularization
	Results
	Additional experiments
	Analysis

	Future work

