Deep Learning for Amazon Food Review Sentiment
Analysis

Jiayu Wu, Tianshu Ji

Abstract

In this project, we study the applications of Recursive Neural Network on senti-
ment analysis tasks. To process the raw text data from Amazon Fine Food Re-
views, we propose and implement a technique to parse binary trees using Stanford
NLP Parser. In addition, we also propose a novel technique to label tree nodes in
order to achieve the level of supervision that RNN requires, in the context of the
lack of labeling in the original dataset. Finally, we propose a new model RNNMS
(Recursive Neural Network for Multiple Sentences), and have better results than
our baseline in terms of every metrics we consider.

1 Introduction

Sentiment Analysis is an important task in NLP. Its purpose is to extract a single score from text,
which makes it more convenient to analyze a large corpus of text. Various methods has been used
to solve sentiment analysis problems, including bag-of-words and n-grams, and the arrival of deep
learning, especially recursive neural network, provides a novel and powerful way to extract senti-
ment from text data.

Recursive neural network has been shown to have a stellar performance using Stanford Sentiment
Treebank data [1]. However, many of text datasets are not as well labeled as Stanford Sentiment
Treebank. For example, the data we have only has one label for each review which is composed of
multiple sentences. Therefore, the goal of our project is to test whether recursive neural network is
still effective with insufficient tree labeling. Moreover, most RNNs are designed to only consider
one single sentence as input, and thus we propose RNNMS, Recursive Neural Network for Multiple
Sentences, to handle multiple sentences at once.

2 Background and Related Work

Recent work has been focused on other complicated RNN models such as recursive neural tensor
network [1], which is robust in detecting negating negatives, and Tree LSTM[2], which has the idea
of forget gate inherited from LSTM. is a hot model and certainly worth our studies in a project.

Looking at last years project [3], the accuracy of that was 59.32% to 63.71%, depending on different
Recursive Neural Network models. They developed vanilla one hidden layer, two hidden layer
recursive neural networks and RNTN. In our project, we achieved 10% more than their result, which
is a significant improvement. Better tree parser and amplify labeling internal nodes techniques are
attributed to our better result.

Meanwhile, Stanford TreeBank, due to the strong supervision, that is to say, thoroughly labeled
internal nodes, achieved very good test accuracy (more than 80%). It is so far the best data set which
to be used for Recursive Neural Network. On the other hand, we can assume that lack of labeling is
one of the big challenges for Recursive Neural Network.

Back to the Kaggle challenge, although there is no current winner accuracy right now, the data set
and the question were actually drawn from a paper coming from Stanford.[4] Though, in their paper,

the main challenge was not sentiment analysis, their highest test accuracy was about 40% in their
studies of users tastes and preferences changing and evolving over time. This low accuracy also
showed that this was a challenging data set to analyze on.

3 Approach

3.1 Dataset
3.1.1 Data preprocessing

The Amazon Food Review dataset has 568, 454 samples. 52268 reviews have a score of 1, 29769
reviews have a score of 2, 42640 reviews have a score of 3, 80655 reviews have a score of 4, and
363122 reviews have a score of 5.

However, we found that it is difficult to distinguish reviews with score 4 and reviews with score 5,
and same difficult for reviews with score 1 and reviews with score 2.

For example, consider the following review:
”good flavor! these came securely packed... they were fresh and delicious! i love these Twizzlers!”

This review turns out to have a score of 4 while it would also make sense if the review had a score
of 5.

Therefore, our solution is to binarize the labels to ”positive” and “negative” by aggregating score 4
and 5 as ”positive”, score 1 and 2 as ’negative”, and ignore samples with score 3 since we are more
interested in reviews with a clear attitude.

After we binarizing review scores, we notice the dataset is quite imbalanced, i.e. about 80% of the
reviews are positive. If we have a classifier which would always predict a review as positive, then it
is able to easily achieve 80% accuracy. To solve this problem, we use undersampling technique. We
randomly drop positive reviews to make the number of positive reviews are roughly the same as that
of negative reviews.

3.1.2 Dataset stats

Before we start building deep learning models, we first examine the features of our dataset in order
to construct an appropriate model.

Using twitter sentiment words [5], we can obtain sentiment label for each word in our reviews. We
want to take a look at the difference of positive reviews and negative reviews from the word-level
perspective.

500 Word-level Sentiment Analysis 0 1400 Word-level Sentiment Analysis 1

700 1200

600
1000
500
800
400
600
300

400
200

100 200

0 0
#pos < #neg #pos = #neg #pos > # neg #pos < #neg #pos = #neg #pos > # neg

The left figure is the summary for negative reviews, and the right for positive reviews. Both of the
figures have three categories. The first category is the number of reviews that contain more negative
words than positive ones, the second is the number of reviews that contain equally many positive
and negative words, and the last one is the number of reviews that contain more positive words than
negative ones.

We notice that while most of the positive reviews have more positive words than negative words,
it is surprising to find that even around half of the negative reviews have more positive words than
negative words.

The stats we just show are important because they show that doing sentiment analysis only on the
word level may not work well for the dataset we have. Therefore, the baseline we have that just
essentially uses bag-of-word model is not likely to perform very well. We need some model that is
able to look at the bigger picture, that is to take sentence structure into consideration.

3.1.3 Tree parser

One of the most important parts of our project is to construct binary trees, in order to feed our
Recursive Neural Networks.

Stanford NLP Parser is a powerful tool to parse sentences to trees based on a specified NLP model.
We choose exhaustive PCFG(Probabilistic Context-Free Grammars) parser as our parser to process
the reviews.

The problem of the PCFG parser is that the tree returned is not always a binary tree. An internal
node may have more than two children. Since our model can only handle two children’s hidden layer
output, then we need to convert trees into their binary form. Therefore, we add the TreeBinarizer
class in processResults() of ParseFiles class, and then we can have binary trees. However, there is
still one more problem of these trees. Some internal nodes may only have one child, since, again, we
need each internal node to have two children for our model. For example, NN — man. To solve
this problem, we employ the following technique: for each internal node that has only one child, we
delete this node and elevate its child one level up. For example, suppose we have NP — the NN
and NN — man, notice that N P node has two children while NN node has only one child. In
this case, we treat the above the structure as NP — the man.

Now we have binary trees ready. The following figure is a histogram of tree depth distribution. We

05 Tree Depth Stats

0.4

o
W

percentage

o
~

0.1

0.0

[—
0 5 15 20 25 30 35 40 5 50
depth category

find that most of the trees we generate from reviews have a depth between 15 and 20. Notice that
if a tree is too deep, not only the model may not perform well but also it takes too long to train the
model using this tree. Therefore, we prune the trees that have a depth more than 20.

Another potential problem of the tree is the lack of labeling. Training Recursive Neural Network
usually needs comprehensive supervision, namely every node is labeled. However, given the nature
of our dataset, one review, composed of multiple trees, only has one label. It may be very difficult
for RNN to learn well with such low-level supervision.

Therefore, in order to increase the level of supervision in our model, we first label words located
at the leaf level. With the help with twitter sentiment words [5], we are able to label the words as
positive, negative or neutral.

However, there are still about half of the nodes that are not labeled. It is difficult to label each node,
or phrase, due to the lack of phrase sentiment banks. Thus we propose a novel technique to label the
internal nodes without laborious human labeling over thousands even millions of nodes. For each
internal node, we check its two children’s label: if their label is identical, then we set the internal

node’s label to the same label; if their label is not identical, then we are not sure about the node’s
sentiment and we just set the label to be neutral.

Notice that although we set some internal nodes’ label to be neutral, the model that we use actu-
ally will ignore all neutral labels and only considers positive/negative labels when calculating loss

function.

3.2 Models

We use a one hidden-layer Recursive Neural Network as our model. In most previous work, RNN
is fed with single sentences. However, we want to feed reviews(paragraphs) to RNN. Therefore, we
propose the model RNNMS (Recursive Neural Network for Multiple Sentences).

We add a new master

_ root, which represents

4--""" the review level.

s

It is good . |

We first define the hidden layer:

For the review root, we have
A

For other nodes, we have
e,

Then we define the output layer:

For the review root, we have

For other nodes, we have

h € Rle, g

like

Y

This substree is the

_ same tree structure
for a single sentence
model.

P

/N
it ! Do n't miss it

N
1 ks T
= tanh((5 Y hepaa)W+ 0) (1)
i=1
max([hi1},, b IO+ b0 0))
= softmax(h(l)U(r) + bg'“)) 3)
= softmax(hVUD + 1)) 4)

c R1><C’ W(l) c deXd, b(l) c RIXd, U(r) c RdXC’ bgr) c RIXC’ U(l) c RdXC’

bgl) € R**C. And we choose the embedding size d = 50, and the label size C' = 2.

Finally, we define the loss function:

J = BCE(yr,4:) + (3 CE(y,9)) +120 W+> w+> vl +>)

all nodes with labels
®)

[is the weight of the review root’s cross entropy loss. We amplify the effect of the review root by
setting 3 = the number of all nodes with a positive/negative label - 1. We increase the weight of
the review root because due to the lack of labeling for internal nodes, we need to make good use of
the review label and after all what we really care about is the prediction accuracy at the review root
level.

Recursive neural network is the way of using the same set of weight and applying recursively on
the same structure. Recursive neural network has been used as a useful tool in natural language
processing, especially in sentiment analysis, because it processes the sentence as how a human
understands a sentence.

There are two major differences between our RNNMS and the naive RNN.

First, at review root level, we average the hidden layer output of all its children. This technique is
similar to averaging every word’s vector in a sentence when we want to do sentiment analysis on a
single sentence. We incorporate the idea of bag-of-sentence to the master root level of our model
because we believe the average value can be a good generalization of the sentences it contain. For
example, if a positive review contains four sentences, and all sentences are positive, then the average
is likely to be also treated as positive. Even there is one negative sentence, the averaging operation
can still put the review level hidden layer output to the positive side.

Second, we have a different output layer for review root than that for all other nodes. The reason
behind this is that while the RNN model assumes there exists a recursive grammatical structure for
each sentence, the relationship between the review and sentences is not captured by any recursive
grammatical rules. Therefore, we need a different pair of U and bs to fit the review root level’s
output.

4 Experiments & Results

4.1 Baseline

Our baseline is a Naive Bayes classifier and we use the average of all word vectors of a review as
the feature vector for a review.

’ oss precision recall fl
050 negative 0.66 0.73 0.69
0as positive 0.72 0.65 0.69
: 0a0 average 0.69 0.69 0.69

The results show that how well the baseline with a basic bag-of-word model can perform. Notice that
the baseline actually performs very well. Due to the nature of the problem, the sentiment analysis
of single sentence like movie reviews, accuracy never reached above 80% for 7 years [6]. We think
the reason behind this is that while movie reviews have a lot of sarcasm, which is very difficult for
any model to grasp, amazon food reviews are much more straight forward, and thus most of the
sentiments are expressed directly at the word level. For example, a user may write a lot of positive
words to say a food is good. It is possible to judge a food review’s sentiment only by identifying
positive words in a food review,. However, it is usually not enough to predict a movie review’s

sentiment only by looking for positive or negative words. Therefore, given the nature of our dataset,
the baseline actually sets a high bar for our RNNMS model.

Unlike many other models using bag-of-word or n-gram, Recursive Neural Network is able to learn
to grasp the semantic structure of a sentence because it considers the semantic composition of a
sentence during training. Therefore, Recursive Neural Network is expected to perform better than
character-level n-gram models and bag-of-word models for sentiment analysis task.

4.2 RNNMS results
For training our model, we initialize the embedding matrix using 50 dimensional GloVe word vectors

trained by twitter data because we think tweets are both semantically and grammatically similar to
online food reviews.

Here is the best result from our RNNMS with learning rate = 0.1 and 12 regularization = 0.01.

’ 055 precision recall fl
. negative 0.72 0.79 0.76
' positive 0.77 070 0.73
: o average 0.75 075 0.74

The results show that all metrics of our RNNMS outperform the baseline we have. The 6% boost of
average accuracy may be the result of more understanding of the grammatical structure of a review.

4.3 Hyperparameter tuning

N~

(a) Ir=0.1, 12=0.005 (b) Ir=0.1, 12=0.01 (c) Ir=0.1, 12=0.02

The above three plots are train accuracy and validation accuracy vs.
of learning rate and 12 regularization.

epoch for three different pairs

Notice that in (a), train accuracy rises to almost 1 but the validation accuracy first hits above 0.7
but later drops and remains around 0.65, which indicates the overfitting problem due to a small 12
regularization parameter. In (c), both train accuracy and validation accuracy grows very slow and
plateau at around only 0.6, which indicates the underfitting problem due to a large 12 regularization
parameter.

For the pair with best test accuracy, which is Ir=0.1 and 12=0.01, we see that both the train accuracy
and validation accuracy goes up significantly since epoch 5 and plateau since epoch 20. Therefore
it shows that our model converges quickly and does not require a large number of training epochs.
It is possible that the reason behind this is that a lot of food reviews are quite similar, and thus when
given similar training reviews, the model is able to learn very fast.

4.4 Activation function comparison

For the review root, we change the non-linearity

to

and

1
Y = tanh((— ¥ Zhg};ld W) (6)
i=1
1N
h(l) - Tel’U/ Nzhchzld) (T) + b(r)) (7)
i=1
Y = sigmoid((Zhguld IWT b)) (8)

The test accuracy for each case are as follows:

08 0745

07

o
@

0.525 0.533

relu tanh sigmoid

test accuracy
o o o o
[R N

o

tanh function has the highest test accuracy. Therefore, we chose tanh function in our best model.
An insight that we got from piazza is that ReLU and sigmoid both saturate at 0 on the negative side,
whereas tanh saturates at -1. Thus, if a weight gets multiplied by the output of a tanh, the size of the
weight matters for negative values of the input to the tanh. It does not matter for any negative ReLU
inputs and for sufficiently large sigmoid inputs in absolute value. [7]

5 Conclusion

o RNNMC performs better than the baseline. Even with insufficient labeling of trees, RN-

NMC is still able to outperform in every metrics we have than the baseline naive bayes
classifier using averaged word vectors as input features, which means that understanding
phrase-level structure does help sentiment analysis task.

For recursive neural network, labeling every node is very important. While this model can
achieve as high as above 80% accuracy using Stanford Sentiment Tree Bank dataset, Our
results show that without sufficient labeling, this model is not able to achieve an accuracy
above 80%, which means RNN family needs strong supervision. However, most of the
online reviews and other documents only have very limited labels, therefore our results are
meaningful because it shows that even without sufficient labeling of tree nodes, it stills per-
forms well. Moreover, we have proposed and tested a novel technique in order to increase
the level of supervision by adding label to some nodes of a tree.

The recursive hidden layer should only be shared among tree nodes that are intrinsically
similar, that is to see we probably should not use the same recursive hidden layer for aggre-
gating sentences for the review root node. The reason is that the relationship between sen-
tences, as we think, should be intrinsically different than that between phrases and words.
Therefore, when we design recursive neural network, we should think about whether the
structure we model should have a recursive property. Otherwise, we need to design a differ-
ent hidden layer and output layer for the review root level, like what we did in our RNNMS.

6 Reference

1.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, An-
drew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the conference on empirical methods in natu-
ral language processing (EMNLP), volume 1631, page 1642. Citeseer, 2013.

. Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic repre-

sentations from tree-structured long short-term memory networks. CoRR, abs/1503.00075,
2015.

. Ye Yuan and You Zhou. Twitter Sentiment Analysis with Recursive Neural Networks.

http://cs224d.stanford.edu/reports/YuanYe.pdf

. J. McAuley and J. Leskovec. From amateurs to connoisseurs: modeling the evolution of

user expertise through online reviews. WWW, 2013.

. Jeffrey Breen. twitter-sentiment-analysis-tutorial-201107.

https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-
201107/blob/master/data/opinion-lexicon-English

. Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment cat-

egorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, pages 115124. Association for Computational
Linguistics, 2005.

. Piazza Discussion

	Introduction
	Background and Related Work
	Approach
	Dataset
	Data preprocessing
	Dataset stats
	Tree parser

	Models

	Experiments & Results
	Baseline
	RNNMS results
	Hyperparameter tuning
	Activation function comparison

	Conclusion
	Reference

