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Abstract

In this paper, we explore the application of Recursive Neural Networks on the
sentiment analysis task with tweets. Tweets, being a form of communication that
has been largely infused with symbols and short-hands, are especially challenging
as a sentiment analysis task. In this project, we experiment with different genres of
neural net and analyze how models suit the data set in which the nature of the data
and model structures come to play. The neural net structures we experimented
include one-hidden-layer Recursive Neural Net (RNN), two-hidden-layer RNN
and Recursive Neural Tensor Net (RNTN). Different data filtering layers, such as
ReLU, tanh, and drop-out also yields many insights while different combination
of them might affect the performance in different ways.

1 Introduction

Sentiment analysis has been a popular topic in the field of machine learning. It is largely applied
to data that comes with self-labeled information such as movie reviews on imdb. A scalar score
comes along with the review text a user writes, which provides a good and reliable labelling of the
text polarity. This ability to identify the positive or negative sentiment behind a piece of text is even
more interesting when it comes to social data. Twitter gets new user data literally every second. If
our model can predict sentiment labels for incoming live tweets, we’d be able to understand the most
recent user attitude towards a variety of topics from a commercial flight satisfaction to brand image.
We used a logistic regression baseline model and complex-structured neural networks, Recursive
Neural Network(RNN) and Recursive Neural Tensor Network(RNTN). Considering the nature of
tweets, we first preprocessed the tweets, built a binary dependence tree as the input to the RNNs.
We tuned our hyper-parameters and applied regularization methods such as L2 regularization as
dropouts to optimize the performance.

2 Related Word

Researchers have applied traditional machine learning technologies to solve the sentiment analysis
problem on the Twitter data set. Agarwal et al [1] proposed a method to incorporate tree structure
to help feature engineering. On the other hand, deep learning researchers have a more natural way
to train directly on tree structure data using recursive neural networks[2]. Furthermore, complex
models such as Matrix-Vector RNN and Recursive Neural Tensor Networks proposed by Socher,
Richard, et al.[4] have been proved to have promising performance on sentiment analysis task. This
motivates us to apply deep learning methods to the Twitter data.
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3 Technical Approach and Models

3.1 Preprocessing

Due to the specific format (for example, 140 character limit) and the mostly casual nature of Tweets,
the vocabulary used in Tweets are very different from formal English used in popular NLP datasets
such as the Wall Street Journal Dataset. Tweets contains a lot of emoticons, abbreviations and
creative ways of expressing excitment such as long tailing (ex. happyyyy). We normalize all letters
to lowercase and perform abstractions such as representing any ”@USERNAME” as a ”<user>”
token and convert a single ”#hashtag” input to a ”<hashtag>” token and a token with the actual
tag value ”hashtag”. Our preprocessing script is based on the Stanford nlp twitter preprocessing
script[6].

3.2 Logistic Regression Baseline

First, we establish our baseline model as a simple logistics regression model using the Bag of Word
representation. Besides extracting words (unigrams) from the tweets, we also include word bigrams
as input features to include introduce some context information to the model. The model is trained
with stochastic gradient descent. Here our task is a multi-label classification problem. Our baseline
model is a combined model with a positive classifier, a negative classifier and a neutral classifier.
To output a final label, the model looks at the three scores produced by the three sub-classifiers and
chooses the one label with highest score.
Each tweet is represented by a sparse vector of word counts, denoted by x. Each sub-classifier learns
a weight vector w based on training examples minimizing the hinge loss.

Losshinge(x, y, w) = max(0, 1− w · φ(x)y)

3.3 Recursive Neural Network: Two-Layer RNN and One-Layer RNTN

We used the cross-entropy loss defined as

CE(θ) = −
∑

yilogŷi,

where y is the one-hot representation of the actual label and ŷ is the probability prediction output by
the softmax layer and θ is the set of our model parameters.

3.3.1 Two-Layer RNN

Forward Propagation:

ŷ = softmax(θ) θ = Uh(2) + b(s)

h(2) = ReLu(z(2)), where ReLu(z) = max(z, 0) z(2) =W (2)h(1) + b(1)

h(1) = ReLu(z(1)) z(1) =W (1)
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where h(1) ∈ Rd is either the word vector at leaf node or a function of h(1)’s from its children.
h(2) ∈ RD and ŷ ∈ Rn. d is the dimension of word vectors, D is dimension of the hidden layer and
n is the dimension of the output layer.

Back Propagation:
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Figure 1: Example Two-Layer Recursive Neural Network Structure

For intermediate nodes:
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Note here δabove refers to either the first half or the second half of the δbelow from the higher layer,
depending on whether the node is a left or a right child.

3.3.2 One-Layer Recursive Neural Tensor Network

The general structure of the RNTN described by [4] is similar to that of the RNN. We’ve taken away
the hidden layer h(2) and we used tanh as the activation function for H(1). The important model
formulation follows, Forward Propagation:

ŷ = softmax(Uh(1) + b(s))

h(1) = tanh(z(1))

z
(1)
k =

[
hLeft
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]T
V (1)[k]

[
hLeft

hRight

]
+W (1)

[
hLeft

hRight

]
+ b(1)

Back Propagation:
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]T
Due to space limitation, we omit the other derivatives similar to what we did in section 3.3.1.

4 Experiment

4.1 Data Set

We used the SemEval-2013 data set collected by York University[7], which consists of 6092 rows
of training data. We further divided the training data into a training set of size 4874 and a dev set

3



of size 1218. Examples in the original data set are classified with five labels: negative, objective,
neutral, objective-OR-neutral and positive. In fact, the difference between objective-OR-neutral and
objective/neutral labels are not very well defined, so for the purpose of our project, we treated the
objective class, neutral, and objective-OR-neutral all as neutral examples.

4.2 Evaluation Metric

Naturally, we chose accuracy as our performance metric for this classification task. At the same
time, we choose the average F-1 score of the positive and negative groups as our metric so that we
have integrate the precision and recall on the two class labels together.

4.3 RNN input format

A recursive neural network requires the training data to have a pre-determined tree structure. We
used the PCFG Stanford NLP Parser[3] to build estimates of the actual optimal tree structures. We
chose to run the parser basing on a careless probabilistic context-free grammar model, which works
better than traditional PCFG models on less strictly grammatical input data such as tweets in our
case. Moreover, our recursive neural network assumes each non-leaf node to have two children. So
we also binarized our parse tree using a binarizer based on Michael Collin’s English head finder.
After these processes, all non-leaf nodes in our parse tree have at most two children. It is possible
that a node has only one child, for example NP → N . We chose to soft delete this node in our NN
implementation where cost and errors are directly passed to the next level without modification at
this level.

4.4 Regularization

Neural networks are much more powerful than our baseline logistic regression model bacause they
can learn complex intermediate units(neurons) and capture nonlinear interactions between inputs.
They are also prone to over-fitting for the same reason. They are so powerful that they usually fit
noises in the training data as well as the general model. In order to generalize the model to unseen
data sets, we put a lot of emphasis on regularization methods.
First of all, we applied a standard L2 norm on the U and W parameters, as well as the V param-
eters in RNTN to avoid overfitting. Furthermore, we experimented with the dropout regularization
described by Srivastava et al[5]. The idea is to randomly omit half of the neurons at training time
for each iteration, which allows us to achieve the same effect as if we are training on 2N individual
neural networks with N being the number of neurons. We applied dropout to the softmax layer of
RNN and RNTN models.

4.5 Results

We initialized our word vectors with GloVe word vectors pre-trained on 2 billion tweets published
by the Stanford NLP group. [8]

Experimenting with different combination of layers with neural net models, the optimal combination
for each model is:

- Drop-out ReLU Tanh
One-hidden-layer RNN Yes Yes No
Two-hidden-layer RNN Yes Yes No

RNTN Yes No Yes

Hyper parameters also play a significant role affecting the performance. The parameters we have
been tuning include:

epochs: epoches number
step: step size
wvecDim: word vector dimension
middleDim: Dimension of the second hidden layer (only applied to RNN2 and RNTN) minibatch:
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size of minibatch
rho: regulization strength

For RNN:

RNN best suits this data set among the three net structures. Since labels on the word- and phrase-
levels aren’t completed, RNN2 and RNTN didn’t give much leeway when models fit the data. How-
ever, this structure also severely suffers from very fitting, as being such a shallow net structure,
fitting all the training data can be challenging. Due to this phenomena, we adjust the regularization
force to correct the overfitting, which we can see from Figure 2. The best performance is given at
reg = 8× 10−4

(a) reg = 8× 10−4 (b) reg = 10−3 (c) reg = 5× 10−4

Figure 2: Examples of how regulization strength affects performance in RNN

The confusion matrix of RNN gives us more insight of about the performance. We can see that the
model is not good at predicting negative label, due to the lack of negative training data. Barely any
instance is classified as negative. It is doing a decent job in neutral and positive labels. The problem
also appears in RNN2 and RNTN models, due to the imbalanced training data is used to train all the
three models.

Figure 3: RNN confusion matrix

For two-hidden-layer RNN:

In the two-hidden-layer RNN, over-fitting is not as severe as in the one-hidden-layer RNN, but
a more appropriate regularisation strength can still give a rise on the performance, see Figure 4.
In RNN2, reg = 1 × 10−3 gives the best performance. In RNN2, reg = 1 × 10−3 gives the best
performance.
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(a) reg = 8× 10−4 (b) reg = 1× 10−3

Figure 4: Examples of how regularization strength affects performance in RNN 2

Apart from regularization, the dimension of the middle hidden layer also come to play, since the
two-hidden-layer RNN has one more layer than the one-hidden-layer RNN that can be tuned.

We can see that despite the general over-fitting phenomena, when middle dimension is 25, the model
gives better performance in terms of data over-fitting and dev accuracy.(Figure 5)

(a) middleDim = 25 (b) middleDim = 35

Figure 5: Examples of how middleDim affects performance in RNN 2

From the confusion matrix, we can see that the model is still nor good at predicting the negative
labels, it has a tendency to mislabel positive as negative, which is not a surprise as the positive
training data has a dominating amount. Despite the average dev accurance of RNN2 is not as good
as RNN, it has improved in the prediction of neutral and positive labels by mislabeling less positive
instance as neutral labels.

Figure 6: RNN 2 confusion matrix
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RNTN:

Theretically speaking, RNTN could have been performing better than RNN and RNN2. However,
due to the lack of word- and phrase- level in the dataset, RNTN model is under-fit. With other hyper-
parameters tuned to its best, we try to adjust the dimension of the middle hidden layer to have the
model properly fit the data. We can see in Figure 7 that, apparently, the lower dimension performs
better.

(a) middleDim = 25 (b) middleDim = 35

Figure 7: Examples of how middleDim affects performance in RNN 2

Results at a glance:

Models Dev ACC Avg F1 scorE
One-hidden-layer RNN 63.71 0.512
Two-hidden-layer RNN 62.45 0.517

RNTN 59.32 0.483

For refernece, when running the same models on tree bank, the accuracy on dev set is as follows.
We can see that with better-labeled data set, these models can generate quality performance.

Models Dev ACC
One-hidden-layer RNN 84.17
Two-hidden-layer RNN 80.68

5 Conclusion

In summary, sentiment analysis in twitter data strikes for cautious pre-processing and the proper
model that best fits the data set. Balance of the data set and available labels of intermediate levels
play a significant roles in training such models. Imbalance of our data set lead to a poor performance
in predicting negative labels through out the models, and the insufficient intermediate-level (word
and phrase- level) labels lead to an under-fit in RNTN.

Another take-home lesson would be tuning the hyperparameters for a better data fit. Our data set
could overfit shallow neural nets, such as the one-hidden-layer RNN. By increasing the regulariza-
tion strength, we are able to obtain a decent performance on one-hidden-layer RNN.

Continuous work after this project to perfect the models could be experimenting with more data set
to look for a proper fit that contains more intermidiate-level information and more fine-tuning on the
hyperparameters, some of which largely depend on the nature of the data set.
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