Abstractive Sentence Summarization with
Attentive Deep Recurrent Neural Networks

Alex Alifimoff
aja2015Q@cs.stanford.edu

Author’s note: I liberally use plural pronouns. Most of my projects are group projects so it
is now naturally my writing style. Sadly, I was the only one who worked on this project.

Introduction

Summarization is the task of taking an input text and creating a supplementary text which
contains the same meaning as the original text, but in less words. In Natural Language
Processing, there are three primary approachs to summarization. The first is reducing
the length of the input text by simply deleting words in the original text, but preserving
word order. This is known as deletion or compressive summarization. The second type of
summarization is called extractive, and refers to generating a summary using words in the
input text only, but without regard to word order. Finally, the third and most general type
of summarization is abstractive, which produces a summary using any words. The output
in abstractive summarization is not at all constrained by the input text. Perhaps obviously,
building a good abstractive system is harder than building summarization systems in either
of the other two regimes.

We can formally define the task. Summarization formally consists of an input string & €
Z, where 27 C ({0,1}V,{0,1}V,..{0,1}V) where V is the size of our vocabulary. An
abstractive system finds a second string y € 2" such that

y = argmax s(x,y) (1)
yex

An extractive/compressive system finds a summary using only words that are extracted
from the original input. This more formally expressed as:

Yy = argmax S(m7m[m1,...,m1\7]) (2)
me{l,....M}N

A compressive summarization simply deletes words from the input sentence:

y= arg max 8(Z, Ty, mn)) (3)
me{l,....M}N m;_1<m;

This paper primarily considers abstractive summarization.

Summarization can naturally be done for many different lengths of input and requested
summary lengths. In this paper, we restrict the task to simple sentence summarization,
meaning that we use an input text of up to 100 words, and we try to produce a single
sentence summary which captures the meaning of the input text.

For notational convience for the rest of the paper, we define an input sequence of length M,
(z1,...,2p) and a summary sequence of length L, (y1,...,yL).

Background and Related Work

There has been some significant work done on sentence summarization. The state-of-the-art
models in the field in recent years have primarily been implemented by Alexander Rush and
Sumit Chopra and their colleagues at Harvard and Facebook.

In particular, in 2015, they demonstrated state-of-the-art performance on the sentence sum-
marization task using a feed-forward window-based neural network with an attention mecha-
nism [1]. In 2016, they used an attentive recurrent neural network (using an Elman recurrent
neural network unit) to improve their results on the same task [4].

This paper draws much inspiration from these two papers and we encourage the reader to
review them as they largely serve as a basis for this work.

Finally, any paper about summarization would be amiss not to mention the excellent Docu-
ment Understanding Conference (DUC), which has historically served a test-bed for compar-
ing modern summarization systems. They offer a variety of quality baselines for evaluating
summarization systems, as well as a number of different tasks to evaluate summarization
systems on various tasks (since naturally, summarization can take many forms which require
slightly different evaluation).

Data

One of the primary difficulties in building a modern summarization system using deep-
learning based approaches is the lack of quality summaries for large datasets. There are
essentially no datasets which pair human-generated summaries specifically. However, there
are a number of data sets which approximate summary-input pairs.

In particular, Gigaword is a corpus which consists of news articles collected from a variety
of sources. This isn’t the perfect dataset, as many of the articles are editorialized or aren’t
really ideal summaries of the content in the article. However, for the vast majority of these
articles, the headline of the article can be used as an effective summary of the content of
the article.

We use 2007 Gigaword, which consists of all of the news articles published by five newspapers
from 1994 to 2007. In total, there are about five million articles.

For our test set, we use 500 articles from the Document Understanding Conference’s Task
1, which simply considers systems which produce short summaries after reading articles.

Data Preprocessing

However, even though there are three million articles, many of these are not suitable for
using as summary-headline pairs. To simplify the task, we only consider the first 100 words
of the article. # We filter to remove (1) articles with editing marks or editorialization in the
title and (2) articles with no non-stop words in common. This leaves us with approximately
1.4 million article-headline pairs to train our model on.

Preprocessing then consists of lower-casing all tokens, and replacing all numeric characters
with a digit character. Finally, we use the most frequent 60,000 words as our vocabulary
and replace all unknown words with a UNK word.

Technical Approach and Models

Information Retrieval Baseline

We use the same information retrieval baseline as in Rush et al. [1] This system just uses
Okapi BM-25, an IR indexing system used by some search engines. This simply indexes the

1'We do this to reduce training time and ensure we don’t need to deal with long-term dependencies
in the model. Rush et al. do something similar, but only consider the first 75 words of the article

training set and chooses the title with the highest score as the summary. The idea here is
to control for memorizing titles.

We refer to this system as IR BL in the results section. B

Feed-Forward Deep Window Model

We use this simple model as a very basic baseline. We simply take a window of the embed-
dings of C=4 words of the generated summary so far, concatenate those vectors with the
entire 100 word embeddings corresponding to the input, and embed those down to a hidden
layer of size 100, and then use that hidden layer to project a softmax-based distribution
over the entire vocabulary.

Formally, this model can be expressed as

P(Yir1|Ye, z;0) o exp(Vh),

y:; = [Eyi—c-‘rl;"'aEyi]a
' = [Fzo,...,Fx[]
h = tanh(Uly.;z']).

We refer to this as Window BL in the results section.

Feed-Forward Attention-based Neural Network

We implement the feed-forward attention-based window model in [1]. This model can be
best understood as generating each successive token in the summary by conditioning it on
the entire input text and some prior window of previously generated tokens. The model
was described by Rush et al. as a neural network language model with an encoder. Rush
et al. implement a baseline encoder, convolutional encoder, and attention-based encoder,
but get the best performance out of the attention-based encoder. For this reason, we only
implement that encoder and describe it formally below:

P(Yit1lye,z;0) o exp(Vh+ Wenc(z,yc)),
yz; - [Eyifc+17"~7Eyi]7
h = tanh(Uy.).

The attention based encoder is defined as:

enc(xz,y,) = p &,
p x exp(z' Py.),
SC/ = [Facl,...,F:cM],
Ye = [GYi—ct1,--.,Gyil,
i+Q
Vio® o= Y x/Q.
q=i—Q

Here, the trainable parameters are 6 = (V,W, E, U, G, F). We use a beam-search decoder
to decode the actual summary.

We refer to this model as ABS in the results section.

2Since we have a smaller training set than in [1], we also use this to control for our intuitions
about data size. We get a slightly lower baseline score than Rush et al., confirming our intuitions

Sequence-to-Sequence RNN with Attention

We also use a sequence-to-sequence (encoder-decoder) model with attention. We use both
GRUs and LSTMs as the recurrent units in this model, but omit the technical details for
brevity.

We use the same implementation of an LSTM as in Vinyals et al [2] and also use a stan-
dard GRU unit (see [3] for details of implementation). However differing from the above
implementation, we use a bidirectional RNN.

We follow the implementation of Vinyals et al. as well for our attention model. Specifically,
they present the following model. First, consider the sequence of encoder hidden states as
(hgys- -, ey,). Likewise, the hidden states of the decoder can be written as (dy, , . .., dy,,)-

After we’ve seen word ¢, we can define:

ul vT tanh(Wih; + Wad;)
al softmax(ul)

M
dp = Y alh

i=1

where W1, W5, v are the trainable parameters.

We refer to this model as ARNN-{unit type} # ### in the result, where the first # is the
number of RNN units and ### is the size of the hidden layer.

Results and Analysis

Quantitative Metric

Our primary metric is ROUGE, Recall Oriented Understudy for Gisting Evaluation. In
particular, we use ROUGE-1 and ROUGE-2 as our metrics for evaluating the quality of
our summaries. These metrics look at n-grams of various lengths that both the reference
summaries and produced summaries have in common. These are the metrics used by DUC
to evaluate the performance of the systems entered in their conference. Formally, ROUGE-N
is defined as:

ZSEReferenceSummary Zn—grames Countmaten ('I’L - gram)

ZSER&fs'rsnceSummary angTamES Count(n - g?“am)

Training Details

Our implementation of the ABS system was very slow. It took significantly longer to train
than the system described in [1]. We believe this is a product of both access to less compu-
tational resources in addition to potentially simply a slower implementation.

We used a 1000 article Gigaword validation set, and generally our validation scores were
higher than our test scores.

We differ from the training of Rush et al. in that we used AdaGrad as opposed to Stochastic
Gradient Descent [9]. However, we found our best performance using parameters similar to
Rush et al. Hidden size 400, context size of 5, Q = 2. However, we found better performance
by using an embedding size of 300 instead of 200. We get our best performance after 14
epochs of training. This took seven days of training time on a single GPU.

We used a batch size of 64 for training of all models.

DUC Test Dataset
ROUGE-1 ROUGE-2

IR BL 10.21 0.91
Window BL 9.29 1.02
ABS 15.21 2.12
A-RNN-LSTM 3 512 21.21 5.01
A-RNN-GRU 3 512 13.42 1.21
A-RNN-LSTM 3 256 20.57 4.67
A-RNN-GRU 3 256 11.84 1.09
A-RNN-LSTM 2 512 20.77 4.30
A-RNN-GRU 2 512 13.78 1.37
A-RNN-LSTM 2 256 20.79 4.36
A-RNN-GRU 2 256 10.77 1.07

We found that the RNN-based models were significantly better in terms of performance,
and so we concentrated most of our time and resources training RNN-based models.

We used Adagrad to train the RNN models. We tried training both 2 and 3 layer models,
using both GRUs and LSTMs as the recurrent units, and tried hidden sizes of both 256 and
512.

We tended to get the best performance from each model after 4-7 epochs of training, with
the exception of A-RNN-LSTM 2 256, which achieved its best performance after 10 epochs.
The best performing model was A-RNN-LSTM 3 512. We include a chart of its validation
score.

Generally, we saw significant improvements between the GRU-based models and the LSTM-
base models. Doubling the size of the hidden layer helped in almost all models, but only
yielded marginal improvements. This seems to suggest that LSTMs manage to capture
something relatively significant in comparison to GRUs. However, it is important to note
that the author’s of [4] manage to get state-of-the-art results using the simple Elman re-
current unit (but compare their system to a nearly comparable LSTM-based translation
model).

Validation Score for A-RNN-LSTM 3 512

24
S
&
W 18
U]
D
@]
x
_5 12
S
B 6
S
©
2
© 0

2 4 6 8 10 12 14
Number of Epochs

3Quite literally: I spent over 500 dollars on AWS time on this project.
4An important distinction between our work and [4] is that the authors of [4] examine slightly
shorter pieces of the input text, but not significantly so (100 words versus 75).

We felt that there were a couple of structural issues which hurt our score. The first was
that ROUGE is a relatively unforgiving metric. There are many good ways to summarize a
sentence. For each summary in DUC, we had four baseline summaries. But there were many
cases where we would have very few overlapping words with any of the baseline summaries,
despite producing what is clearly a reasonable summary of the content. Intuitively, we
actually felt we got qualitatively better summaries from systems with slightly lower ROUGE-
1 and ROUGE-2 scores.

The second issue was that our system naturally produced relatively short summaries, as the
headlines we trained on had a length of, on average, 4.5 words. Adding penalties for short
sentences helped to some extent, but often resulted in repeating the same key word over
and over as opposed to producing better, but longer summaries. We believe this deficiency
was due to the fact that our model never saw longer sentences and so understanding the
grammatical structure of longer sentences was beyond its abilities.

Generally, we felt that the RNN-LSTM was significantly better than the ABS model in
several regards. First of all, the model is quicker to train, both in terms of the speed per
batch and in terms of number of epochs until the ROUGE score started to drop off on our
validation set.

Qualitative Performance, Successes and Faults

We give some examples of the kinds of things that our system manages to summarize quite
well. Generally, we got quite good performance summarizing articles that addressed topics
that our system had seen before in the past. Generally, these DUC test items tended to be
very news-related articles about topics that were relevant between 1994 and 2007 (the time
that our data set spanned).

However, there were a number of things that our model did not manage to capture correctly.
We noticed a couple of trends in terms of categorical errors by our system.

1. Our system failed when it was presented with a topic that it had seen very rarely
in the training data. For example, if given paragraphs that were not news related,
our model had a tendency to produce the most common starting tokens in our
vocabulary. These tended to be "urgent” (an editorialized title which was not
successfully removed by our filtering) or our "UNK?” token.

2. Our system often had a tendency to repeat key words. For example, in a summary
that was supposed to be about Hosni Mubarak meeting foreign leaders, our system
produced "mubarak meets mubarak”, clearly identifying that "mubarak” was an
important part of the input, but failing to identify other important actors. In other,
similar situations, our system would produce a good summary, but just repeat one
word twice unnecessarily, often in a row. For example, in a summary that was about
a political party meeting in malaysia, our system produced "malaysia’s malayasia’s

party meets”. We believe that this systematic error points to deficiencies in the
language model. We discuss this further in the conclusion.

3. Our model often fails "sufficient” semantic information, capturing a higher level
summary than the gold-standard summaries capture. For example, in an article
about a hurricane weakening, we see gold summaries such as ”hurricane mitch
weakens after widespread destruction in honduras”, but our model only captures
“hurricane _ UNK off american coast”. This is likely related to the data we used to
train. The headlines capture significantly less information that the baseline sum-
maries because they are shorter.

To try to get a better understanding of the inner-workings of our best model, we examined
some of the sentence encodings that resulted from feeding various sentences into the network.

To produce this particular graphic, we encoded each sentence by feeding it into the encoder,
collected the respective hidden states, and then used PCA to reduce the dimension of each
vector so that we could represent it in a two-dimensional space.

300 [the nascar race was this weekendJ
200} the stock market had huge gains heading into the cIoseJ
(the stock market opened up lower this mornin:
100} [the stock market suffered heavy losses this morning
0 -
-100 z - R z
[thls movie was one of the funniest in awhile
—200
the superbow! happened last weekend}
-300(\
-600 -400 —200 0 200 400

Here we can see that the sentences which discuss similar topics are clustered together in
two-dimensional space.

We were also curious about how the construction and semantics of particular sentences
affected the distribution in vector space. Using the same technique, we input some simple
sentences into the model which contained similar topics, but different semantic meanings
projected into several different word-level constructions. We can see that while semantic
differences do appear to cluster to some extent, sentences with similar constructions are
much closer to one another than semantically similar constructions. This suggests that we
could potentially make some significant improves to the system by coming up with some
way of rewarding semantic capture more effectively.

300

{the stock market opened significantly Iower}

200 the stock market opened lower

100[{the stock market made huge galns}

[lhe stock market suffered heavy \ossesJ \o

o the stock market opened significantly higher \.
the stock market opened higher
L

-100-

—-200

the nasdaq gained 100 points
-300|-

-600 —-400 -200 0 200

Conclusions and Possible Future Work

In general, we felt that our project was quite successful. We managed to build and train
two relatively complex architectures, and outperform reasonable baselines in the task. We
wish we could have trained a more state-of-the-art model, as we believe there were minimal
differences between the models we used and the current state-of-the-art abstractive summa-
rizers (see [4] for the current best model), but we believe that much of the gap would have
been made up with the larger datasets of [1] and [4].

One of the primary issues we felt existed with our sentence outputs was simply their lack of
conformation to the standards of English. Consider the problem we discuss in our review of
the model about repeated words. This kind of trait should be very low probability in English.
However, even though we have a over a million training examples, we could significantly
increase the size of our training corpus if we were to first train a recurrent language model
and then use it to initialize the values for our decoder. This is similar to the concept of
initializing word vectors by using GloVe or some other source of pretrained word vectors.
Generally, we believe the literature supports improvements in models with smaller training
sets using these pre-trained embeddings. [10]

In fact, the authors of [1] augment their decoder with a separately trained language model,
and then decoder using beam search on the combined scores of the language model and
the summarization model. They definitely demonstrated some improvements utilizing this
set-up. We would be interested to see how effective pre-training a language model is versus
augmenting the entire system in the same manner as [1].

We felt like one clear thing we could do to improve our model was increase the size of our
dataset. The most recent version of Gigaword has several million more articles, and the
original papers that inspired this work, [1] and [4] both used the larger version of Gigaword
and also ha& better results. We suspect that our model would improve significantly with
more data.

Finally, we think it would be interesting to explore some alternative metrics, or find alter-
native datasets with a larger set of reference summaries. Even for relatively simple news
articles, there were simply far too many possible “correct” ways to summarize a sentence
without getting a particularly high ROUGE score. This would likely be improved with a
larger set of reference summaries, but still potentially indicates that work exploring better
metrics could yield significant improvements in system performance and comparison.

50ur work confirmed this. Testing with a dataset of half the size resulted in a performance
decrease of over 50% on average for the RNN-LSTM models of all sizes

Acknowledgments

I would like to thank Richard Socher, who put together a truly interesting class and whose
enthusiasm for the field made it completely approachable and Jencir Lee, who I worked
with on a similar project in the fall and without whose advice I would have floundered
considerably.

References

[1] Rush, A., Chopra, S. & Weston, J. (2015) A Neural Attention Model for Sentence Summarization.
http://www.aclweb.org/anthology/D15-1044

[2] Vinyals, O., Kaiser L., et al (2015) Grammar as a Foreign Language.
https://arxiv.org/pdf/1412.7449v3.pdf

[3] Cho et al. (2014) Learning Phrase Representations using RNN Encoder—Decoder for Statistical
Machine Translation. https://arxiv.org/pdf/1406.1078v3.pdf

[4] Chopra, S. et al. (2016) Abstractive Sentence Summarization with Attentive Recurrent Neural
Networks. http://nlp.seas.harvard.edu/papers/naacll6_summary.pdf

[5] Bird, S, Ewan K, and E Loper (2009), Natural Language Processing with Python, O'Reilly
Media.

[6] Abadi et al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. http://download.tensorflow.org/paper/whitepaper2015.pdf

[7] Chollet, F. (2015) Keras. https://github.com/fchollet/keras

[8] Theano Development Team. (2016) Theano: A Python framework for fast computation of
mathematical expressions. https://arxiv.org/pdf/1605.02688.pdf

[9] Duchi, J. et al. (2010) Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization. http://www.magicbroom.info/Papers/DuchiHaSi10.pdf

[10] Tian, Y. et al (2016) On the convergent properties of word embeddings.
https://arxiv.org/pdf/1605.03956.pdf

[11] Lin, C. (2004) ROUGE: A Package for Automatic Evaluation of Summaries.
http://www.aclweb.org/anthology /W04-1013

