
Merging Recurrence and Inception-Like
Convolution for Sentiment Analysis

Alex R. Kuefler
Department of Symbolic Systems

Stanford University
akuefler@stanford.edu

Abstract
Computer vision has driven many of the greatest advances in convolutional
neural networks, a model family that has found only limited use for natural
language processing. The inception module [2] of GoogleNet in particular
attains high classification accuracy with few parameters. This project
attempts to harness the insights of the inception module in a jointly
convolutional and recurrent natural language model. A set of 18 networks
built on the idea of combining convolution and recurrence are evaluated on
a fine-grained (8 class) sentiment analysis task using the IMDB Large
Movie Dataset [5].

1 Introduction
Within the deep learning model family, recurrent (RNN) and convolutional neural networks
(CNN) have served as the two major workhorses for natural language processing (NLP) and
computer vision tasks respectively. RNNs make use of feedback loops that propagate hidden
layer activations through time, allowing these models to represent sequential data like text,
where an input’s semantics depend heavily on previous (and subsequent) inputs. Conversely,
CNNs exploit the spatial structure of images by learning a set of filters that respond
selectively to oriented gradients or colors within their receptive field.

Major breakthroughs in computer vision and the ImageNet challenge [1, 2, 3] have driven
the development of many variations on the CNN architecture. Google introduces the
“inception module” in particular, which achieved ImageNet state-of-the-art in 2014 with
remarkably few parameters. CNNs are now showing some promise as sentence models [6,
7]. But despite the growing diversity of model architectures in computer vision, the limited
applications of CNNs to NLP still largely resemble the classical architecture formulated by
LeCun, Bottou, & Bengio [4].

This project explores ways in which the spatial-selectivity of CNNs may be integrated with
the sequential processing of RNNs. A convolutional architecture loosely inspired by
GoogleNet’s inception module is introduced. Its outputs are merged with those of a gated
RNN, allowing the model to respond selectively to important n-grams at different scales,
while also capturing long-term dependencies in sentences. The model is evaluated on a fine-
grained (8 class) sentiment analysis task using the IMDB movie review dataset [5].

1 . 2 B a c k g r o u n d

An early CNN model for sentence data is introduced in [6]. Their Time-Delay Neural
Network (TDNN) uses a convolution operator to map input to output sequences. These
output sequences undergo max-pooling, allowing the model to “flatten” sentences of variable
lengths into a vector of maximally responding units. Because the dimensionality of this
vector is constrained by model hyperparameters, the TDNN is readily stacked with fully
connected layers. However, [7] observes that max pooling causes the model to forget word

order, and is unable to distinguish between cases where the max feature appeared once,
versus multiple times. Instead, they introduce k-max pooling. Given a CNN output sequence
and integer k, the algorithm chooses the k maximally activated entries of the sequence, and
returns a subsequence that preserves their order (but discards intermediate features). The
“dynamic” variant of this operation treats k as a function of sentence length and network
depth. The resulting Dynamic Convolutional Neural Network (DCNN) preserves many of the
favorable properties of TDNN, while discarding less information. But despite DCNNs ability
to preserve word order, there remain many nuances of sentence data they seem unprepared to
handle. The semantics of many sentences depend not only on the order of key words, but
also upon how keywords are scoped by modifiers or depend upon a long-term context.

Many RNNs appear better equipped to handle such context effects. Although the classic
RNN formulation suffers from the vanishing gradient problem, limiting its memory to only a
few time-steps, new architectures experiment with gating mechanisms capable of
remembering information across longer sequences. The long short-term memory (LSTM)
consists of a constant error carrousel that maintains a cell state, which selectively accepts,
erases, or emits its stored value through elementwise multiplication by an input gate 𝑖!,
forget gate 𝑓!, and output gate 𝑜! at each timestep [8]. The end product is a hidden state
vector ℎ! that potentially captures information from much earlier timesteps.

𝑖! = 𝜎(𝑊 !𝑥! + 𝑈!ℎ!!!) ; 𝑓! = 𝜎(𝑊!𝑥! + 𝑈!ℎ!!!) ; 𝑜! = 𝜎(𝑊!𝑥! + 𝑈!ℎ!!!)

𝑐! = 𝑡𝑎𝑛ℎ(𝑊!𝑥! + 𝑈!ℎ!!!))

𝑐! = 𝑓!⨀𝑐!!! + 𝑖!⨀𝑐!

𝒉𝒕 = 𝒐𝒕⨀𝒕𝒂𝒏𝒉 (𝒄𝒕)
Figure 1. LSTM update equations [9].

The final major source of inspiration for this work was the Inception Module of [2]. Szegedy
et al. observe that the performance of deep vision models can reliably be improved by
increasing model size, but doing so increases the risk of overfitting and the need for greater
computational resources.

Figure 2. Idealized inception module (left) and pragmatic version (right). From [2].

The inception module introduces sparsity into neural networks by replacing fully-connected
(FC) layers (consisting of many parameters) with parallel convolutions that act on the same
input layer but at different scales (which save on parameters by sharing weights). They
describe an ideal architecture (left on Figure 2), where convolution with 1x1 filters is
intended to capture correlated features clustered in the same region of input images.
Simultaneously, 3x3 and 5x5 convolutions respond to image patterns at slightly larger
scales. The feature maps produced by all convolutions (in addition to the outputs of a
pooling layer), are concatenated to form the output activations. The authors concede that this
architecture may still be computationally expensive, and include a dimensionality reduction
stage (using 1x1 convolutions) for their final design (right on Figure 2).

2 Approach
This project observes that the notion of sparse, parallel processing of inputs may have a nice
analogue for sentiment analysis. N-gram models are widely used for NLP, where feature

engineering often consists of selecting the length (n-value) for contiguous subsequences of
sentence data [10]. Choosing a correct value may require domain knowledge or trial and
error. By convolving sentences with a kernel that responds to contiguous subsequences of
sentence inputs, the TDNN and DCNN can be interpreted as extracting n-grams from text.

Similarly, the proposed Language Inception Module (LIM) extracts n-grams of multiple
scales from a sentence. But whereas the DCNN computes n-gram features of different sizes
at different network depths, the proposed architecture computes feature maps for different n-
grams on the same sentence input. As in TDNN, these features maps are max pooled into a
standard length, which are concatenated to form the output vector, as in the inception
module. The end result is a CNN resembling the idealized inception module, in that it
performs automated feature extraction at multiple scales, in parallel.

Figure 3. Language Inception Module.

Unlike DCNN, this first formulation performs simple max pooling, thus discarding word
order and frequency information. I instead observe that meaning depending on a sentence’s
structure and syntax is more adequately modeled by an RNN, and that the job of a
convolutional module is to learn n-gram features that contribute meaningfully to the
minimization of the loss function. As such, the LIM is trained jointly with an RNN, rather
than acting as a replacement.

Figure 4. Completed network architecture with CNN (left), RNN (right), and classifier (top).

The resulting architecture features two “trunks” that process the same input sentence in
parallel. The convolutional trunk extracts n-grams at multiple scales and max-pools to find
the strongest responding subset of sentence subsequences (the number of which depends on
the number of filters chosen, which is specified as a hyperparameter). The recurrent trunk
uses gated units to model long-term dependencies between words in the sentence. The
outputs of each trunk are concatenated or undergo elementwise multiplication to produce a
feature vector upon which a classifier can be trained.

3 Experiments
Different variations upon this broad architecture were explored in three experiments. All
tasks involve multi-class sentiment analysis on the IMDB dataset of [5], where the networks
must learn to classify text from movie reviews into one of 8 possible star-ratings determined
by reviewer’s sentiment. Each minibatch of data seen by the network during training consists
of the first 200 hundred tokens of each movie review, converted to a sequence of GloVe
vectors [11]. The GloVe vectors were pre-trained from the Wikipedia 2014 and Gigaword 5
datasets and are 50-dimensions each. Tokenization was performed by the NLTK python
library [12] and discarded punctuation and nonwords. All models were implemented in
TensorFlow [13].

3 . 1 D a t a s e t

The IMDB Large Movie Dataset includes 50,000 movie reviews written by users and labeled
with low (i.e., star ratings of 1, 2, 3, or 4) or high (i.e., 7, 8, 9, 10) sentiment values. No
single movie is reviewed more than 30 times, and in order to decorrelate the data, no movie
reviewed in the training set is also reviewed in the test set.

The longest review in the dataset is 2,445 tokens long, whereas the shortest is only 6 tokens.
At training time, all examples are standardized to be the first 200 tokens of the review.
Reviews shorter than 200 tokens are padded with zero-vectors.

This dataset is well-studied in the domain of sentiment analysis. Wang and Manning [14]
evaluate a zoo of different classifiers based on Naïve Bayes and Support Vector Machines
(SVM) on popular sentiment datasets and report the state-of-the-art for the large movie
dataset near 91.22% accuracy. However, they only evaluate binary classification accuracy.
To my knowledge, there is no previously published state-of-the-art for the IMDB dataset
based on the 8-way sentiment classification task described here. Given the difficulty of fine-
grained sentiment analysis over binary classification, we can nevertheless treat Wang &
Manning’s figure as a reasonable upper bound for the performance of my models.

3 . 2 E x p e r i m e n t 1

The first experiment evaluated the LIM against an architecture including only bigram filters
and one including only trigram filters in the convolutional trunk. A baseline, purely
recurrent LSTM was also trained and evaluated.

Figure 5. Learning and validation curves for all one-way RNN models. X-axis on 5-epoch intervals.

Each network’s recurrent trunk was made up of a single LSTM layer, where outputs were
extracted only from the last time-step (before zero-padding) for each of the variable length
reviews. Elementwise multiplication was used to merge the outputs from the two trunks.
Dropout was used to regularize the network and occurred after the nonlinearities of each FC
layer. All models trained for 50 epochs, where training and validation accuracy was recorded
every 5 epochs.

Learning Rate 1e-5
Exponential Decay 96% every 8 epochs
Dropout Probability 10%
Batch Size 20
Activation Functions Exponential Linear Unit (ELU)
FC Layers in Classification Head 3
Units per FC layer 300
Total LSTM units 300
Total Convolutional Filters 300

Figure 6. Final hyperparameter settings chosen throughout all 3 experiments.

The results on the validation set indicated an advantage for the bigram-based model, but all
networks including a convolutional trunk demonstrated a slight improvement in accuracy
above the LSTM baseline.

One-Way LSTM Only Bigram-LSTM Trigram-LSTM LIM-LSTM
Train 34.27% 38.16% 40.98% 38.06%
Validation 32.54% 33.86% 33.24% 33.18%

Figure 7. Final training and validation accuracy for Experiment 1 models.

3 . 3 E x p e r i m e n t 2

The next study evaluated the performance of similar models that make use of bidirectional
networks in the recurrent trunk. Bidirectional RNNs consist of two sub-networks that
process sequences forward and in reverse order respectively, before combining their outputs
into a single hidden representation. Although merging of the two networks typically occurs
through concatenation, recent work in deep learning has demonstrated the effectiveness of
simple elementwise multiplication in generating meaningful feature vectors from multiple
sources [15]. Both methods for merging the networks are tested here.

Figure 8. Learning and validation curves for concatenated models. X-axis on 5-epoch intervals.

In the condition making use of elementwise multiplication, the bigram and inception
modules emerged as the winners, now by a more significant margin.

Elem. Mul. LSTM Only Bigram-LSTM Trigram-LSTM LIM-LSTM
Train 30.72% 33.19% 28.94% 33.58%
Validation 28.76% 31.10% 26.80% 31.89%

Figure 9. Final training and validation accuracy for multiplicative models.

Surprisingly, the opposite result was born out when concatenation was used. In these
conditions, the bigram and inception modules performed closer to the level of the baseline,
whereas the trigram model took the lead.

Concatenate LSTM Only Bigram-LSTM Trigram-LSTM LIM-LSTM
Train 28.24% 29.22% 29.64% 28.72%
Validation 27.58% 28.26% 29.94% 27.33%

Figure 10. Final training and validation accuracy for concatenated models.

Between the two merge strategies, elementwise multiplication seemed to produce better
results altogether. However, it is worth noting that in order to produce results comparable to
the first experiment, the same amount of training data (10,000 examples) was held fixed.
Because both these models (and especially the one using concatenation) contain more
parameters, yet train on the same amount of data for the same number of epochs, they may
be underfitting.

3 . 3 E x p e r i m e n t 3

Given the close accuracies of the previous models, the final study sought to test how the
convolutional networks performed in isolation of the recurrent trunk. A similar experiment
to the previous 2 was repeated, but the models were trained for an additional 30 epochs each.
Furthermore, the number of filters and hidden units were scaled between conditions.

Figure 11. Learning and validation curves for small CNN models. X-axis on 5-epoch intervals.

In the first condition, the convolutional models featured 300 kernels in total (100 allocated
to each extractor type in the case of the inception module) followed by 300-dimensional FC
layers. In the second condition, this hyperparameter was set at 600.

Figure 12. Learning and validation curves for larger CNN models. X-axis on 5-epoch intervals.

 Bigram300 Trigram300 LIM300 Bigram600 Trigram600 LIM600
Train 31.29% 31.28% 31.43% 34.17% 36.48% 34.81%
Validation 30.82% 30.04% 29.36% 31.10% 31.14% 30.06%

Figure 13. Final training and validation accuracy for CNN-only models

Again the bigram model appeared the most desirable, leading to greater accuracy with
slightly less overfitting. Although the CNNs converged to similar levels of accuracy as the
two-trunk architectures, they demonstrated an unusual learning pattern. Each model
remained relatively close to chance accuracy for about 15 epochs before jumping to a more
respectable range.

3 . 3 T e s t S e t R e s u l t s

Finally the 10 most promising models were evaluated on a held out test set consisting of
5000 examples. The accuracy and number of weights in each network is shown below.

M o d e l A c c u r a c y P a r a m e t e r s
O n e - W a y L S T M 3 1 . 8 4 % 6 9 4 , 5 0 8
O n e - W a y B i g r a m - L S T M 3 3 . 2 2 % 8 1 5 , 1 0 8
O n e - W a y I n c e p t i o n - L S T M 3 2 . 6 2 % 8 2 5 , 1 0 8
E l e m . L S T M 2 9 . 4 8 % 1 , 2 0 6 , 0 0 8
E l e m . B i g r a m - L S T M 2 9 . 2 2 % 1 , 3 2 6 , 6 0 8
E l e m . I n c e p t i o n - L S T M 3 0 . 5 8 % 1 , 3 3 6 , 6 0 8
B i g r a m 3 0 0 2 9 . 5 4 % 3 0 3 , 6 0 8
I n c e p t i o n 3 0 0 2 8 . 3 4 % 3 1 3 , 6 0 8
B i g r a m 6 0 0 2 9 . 8 4 % 1 , 1 4 7 , 2 0 8
I n c e p t i o n 6 0 0 3 0 . 5 8 % 1 , 1 6 7 , 2 0 8

Figure 14. Final test set accuracies and parameters for 10 best models.

These results largely bear out expectation established by the validation accuracies, with the
bigram-LSTM model developed in experiment 1 attaining the best performance by a small
margin. However, when the number of parameters is accounted for, the CNN-only models
look desirable.

Figure 15. Accuracy per parameter of each model.

Figure 15 displays the accuracy-over-parameters (AOP) of each model. The important thing
to note is that the CNNs had half the parameters of the smallest merged model, and an order
of magnitude fewer parameters than the bidirectional networks, yet performed on par with
them. As a result, each weight in the smaller CNNs can be thought of as accounting for

about twice as much of the fraction of accuracy accounted for by weights in the One-Way
LSTM.

Figure 16. Confusion matrices for best model based on AOP (left) and best based on un-weighted

accuracy (right).

The networks’ patterns of errors are also informative. Figure 16 displays the confusion
matrices of the best model according to the AOP metric (left), and the best according to
classification accuracy (right). Both models reasonably favor classifications on the two poles
of the sentiment spectrum (1 vs. 10-star ratings), rarely confusing a negative sentiment
review with a positive one. However, both models encounter difficulty classifying less polar
reviews and tend to mistake a review’s class with its closest pole.

4 Conclusion
This work evaluated 18 deep learning architectures on a novel, fine-grained sentiment
classification task for the well-known IMDB Large Movie Dataset. Although I present a
CNN module inspired by the computer vision model GoogleNet, all evaluations point to a
simpler, bigram-based CNN as the best model for this task. This result accords with the
findings of Wang & Manning [14], who similarly demonstrated that a modified SVM trained
on bigrams outperformed more elaborate state-of-the-art models. Whether the power of
bigram models depends on the statistics of this particular dataset would be an important
question for follow-up work.

Interestingly, merging CNN and RNN into a single network also appeared to improve
accuracy. Although the argument was made that the CNN models attain the greatest accuracy
for their number of parameters, the combined architectures outperformed all other models on
pure accuracy scores. I attribute this to the network’s ability to learn n-grams significant to
the objective function, while still modeling word-by-word sequences through recurrence.

In summary, although merged networks appear useful for sentiment classification, little
empirical support has been found for the effectiveness of LIM in particular. However,
different modifications may improve the proposed model. For example, just as [2]
implemented a pragmatic inception module that differed from their original design, the LIM
may benefit from input-pooling or 1x1 convolutions. Given the baselines established by
[14], it may also be the case that the dominance of the bigram networks is an artifact of the
IMDB dataset, and the LIM may benefit from testing in other domains.

5 References

[1] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems (pp. 1097-1105).

[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 1-9).

[3] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv
preprint arXiv:1512.03385.

[4] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.

[5] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011, June). Learning word
vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1 (pp. 142-150). Association for
Computational Linguistics.

[6] Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language processing: Deep
neural networks with multitask learning. InProceedings of the 25th international conference on Machine
learning (pp. 160-167). ACM.

[7] Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling
sentences. arXiv preprint arXiv:1404.2188.

[8] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-178.

[9] Socher, R. (2016). Lecture 8: Recap, projects and Fancy Recurrent Neural Networks for Machine
Translation. CS 224: Deep Learning for NLP. Stanford University.

[10] Jurafsky, D., & Martin, J. H. (2014). Chapter 4: N-grams. In Speech and Language Processing. Draft of
September 1. Pearson.

[11] Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global Vectors for Word
Representation. In EMNLP (Vol. 14, pp. 1532-1543).

[12] Bird, S. (2006, July). NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on
Interactive presentation sessions (pp. 69-72). Association for Computational Linguistics.

[13] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv preprint
arXiv:1603.04416.

[14] Wang, S., & Manning, C. D. (2012, July). Baselines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Short Papers-Volume 2 (pp. 90-94). Association for Computational Linguistics.

[15] Oh, J., Guo, X., Lee, H., Lewis, R. L., & Singh, S. (2015). Action-conditional video prediction using
deep networks in atari games. In Advances in Neural Information Processing Systems (pp. 2845-28

