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Abstract

Recurrent Neural Networks are very powerful computational tools that are capable
of learning many tasks across different domains. However, it is prone to overfit-
ting and can be very difficult to regularize. Inspired by Recurrent Dropout [1]
and Skip-connections [2], we describe a new and simple regularization scheme:
Stochastic Dropout. It resembles the structure of recurrent dropout, but offers
skip-connection over the recurrent depth. We reason the theoretical construct
of such method and compare its regularization effectiveness with feedforward
dropout and recurrent dropout. We demonstrate that Stochastic Dropout not only
offers improvement when applied to vanilla RNN models, but also outperforms
feedforward Dropout on word-level language modeling. At last, we show that the
model can achieve even better result if stochastic dropout and feedforward dropout
are combined.

1 Introduction

Overfitting has always been a problem for blackbox learning algorithms such as neural networks.
They typically overfit the training data, and fail to generalize . The problem of overfitting is largely
driven by the limited amount of training data, resulting in the model trying to fit the training noise
perfectly but fail to recognize the real underlying structure, and successfully generalize [3]. Such
problem is significant in a wide range of machine learning applications, such as image recognition,
scene classification, and especially natural language processing.

Historically, many have worked on effective methods to prevent such problem. People have tried
to apply regularization techniques on various parts of a neural network: weight decay on weight
parameters (Lo regularization) [4], dropout on hidden nodes [3], DropConnects on weights [5], data
augmentation on input [6], stochastic pooling on the pooling layer for convolutional neural network
[7], and Disturb Label on loss layer [8].

Most of the regularization techniques are developed on feedforward networks, but we are seeing the
emergence of regularization on Recurrent Neural Networks. It is proven to be difficult to regularize
a time-sequence dynamic system, notably due to it computing on two directions. Semeniuta et al [1]
described a dropout scheme along the recurrent depth on the input update gate g. Cooijmans et al. [9]
applied batch normalization to the gate activations computation as well as hidden state update. Such
methods demonstrated effectiveness and importance of regularization in Recurrent Neural Network.

Beyond regularization, recent discoveries have suggested the power of skip-connections on neural
networks. He et al. [10] demonstrated the power of simple additive skip-connection to allow deeper
and better learning. Srivastava et al. [11] showed how to construct gate-like gradient highway that
greatly expands the computing capability of convolutional neural network. In the domain of recur-
rent neural network, Zhang et al.[2] also described patterns of skip-connection on recurrent neural
networks, and argue for the importance of recurrent depth as compared to feedforward depth.





Figure 1: Stocdrop schemes: Illustration of proposed stocdrop methods. Every time step has §
probability of being skipped, the c;_; output gets copied directly as c.1.

We propose a new scheme that not only regularizes recurrent neural network similar to the dropout
methods, but effectively builds skip connections as well that allow network to learn better represen-
tations. We further demonstrate the effectiveness of this technique on word-level and character-level
neural language modeling, and show superior performance compared to previous baselines on Penn
Treebank task.

2 Related Work

2.1 Regularization

Dropout probably is the most discussed and explored regularization technique since its conception
[3]. The effectiveness of dropout allows the building of large networks, and its ensemble effect
is also well-documented. The original dropout is developed on a feedforward architecture. The
recurrent depth direction dropout is formally studied by Moon et al. [12], Gal [13] and Semeniuta
et al. [1]. Dropout effectively forces all neurons to participate in the final task, and by limiting
the number of participating hidden units, it restricts the computational power of each sub-network,
preventing the ability to overfit. Dropout is not only used for hidden state units. It has also been
applied to input data augmentation, as argued by Wager et al. [14] for creating pseudo information-
corrupted dataset.

2.2 Skip-connections

Skip connections in neural network have been explored by many. The earliest work in skip connec-
tions are examined in the context of convolutional neural network, which inherits the simple feed-
forward architecture of fully-connected networks. Highway Networks [11] builds gradient highway
that through a transform gate, computed via a mixture of input and hidden states (similar to the gate
calculation of a recurrent neural network), the network learns to allow a portion of input data (as
well as intermediate layer input) to flow through. Building skip-connections allow bigger and deeper
networks to be trainable, and continuing with this projection, ResNet [10] was developed. Instead of
using a convolution as transform gate, ResNet did an additive application of the raw previous layer
input and the convolved output. It allows faster computation time as well as even deeper depth. The
latest discovery in feedforward skip-connection is Stochastic Depth Network [15]. Stochastic Depth
Network skips a layer via either a constant probability or a probability with linear decay. It allows
even deeper network with faster training time.

Skip-connections are also explored in Recurrent Neural Network. In Zhang et al. [2], the architec-
ture of a recurrent neural network is described as having feedforward depth, recurrent depth, and
recurrent skip-coefficients. Zhang explored several neural network with additional additional con-
nections between two stacked hidden layers, but did not skip any computation, as Stochastic Depth
Network would.



2.3 Language Modeling

Language modeling is one of the most long-lasting tasks in natural language processing. The tra-
ditional methods use n-gram with smoothing algorithms that uses discrete representation of words
(normally one-hot encoded vector) as input representation [16]. Bengio et al. [17] first described
the possibility of moving towards a more continuous representation of words and how they get
combined. Word-level language is first explored in modern recurrent neural network structure by
Mikolov [18], as well as character-level [19]. Character-level language modeling has the advantage
of a small softmax projection the |V,| is much smaller than |V,,|. Deep recurrent neural network has
been used by Graves [20], and convolution neural network has also been explored by Kim [21].

3 Data

TokenType Train  Val Test

CHAR 5017k 393k 442k
WORD 930k 74k 82k

Table 1: The amount of data in training, validation, and test set.

Due to various constraints, instead of One Billion Word Benchmark [22] or Text8 [19], we choose
to train our language model on the more moderate and manageable task: Penn Treebank task [23].
It is composed of 4.5 Million English words, and is used by numerous models as the benchmark
for language modeling tasks. We split the data in on character level as well as word level. We use
the same split as in Mikolov et al. [19] for character-level modeling, and we use the same split as
Graves [20] for word-level modeling. We tokenized the most frequent 10,000 words (|V]), and the
outside vocabularies are labeled with <UNK> token.

4 Method

4.1 Neural Language Modeling

We define the language modeling task for a sequence of tokens = (z1, 22, -+ , &7 ), we maximize
the probability of such sequence p(z):
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Traditionally in the n-gram model, markov assumption would be used to simplify the above model
to p(z) = HZ;I p(x¢|xs—1), but arguments can be made that the most immediate or most N im-
mediate tokens don’t capture the full history. Recurrent Neural Network based model can represent
an arbitrary length text capturing full history (in theory), while in practice such long-term depen-
dency capture is quite difficult due to vanishing gradient. We use softmax to calculate a distri-
bution over all vocabularies. Due to the limited size of our |V/|, we choose not to use sampled
softmax [24] or other sampling-based methods. We calculate the sequence cross-entropy loss as
L(z,0) = — > logpo(we|zi—1 - - 21).

4.2 Dropout

4.2.1 Forward Dropout

We sample forward dropout mask along the feedforward axis from hidden states to hidden states in
a stacked recurrent neural network. In a stacked RNN, every hidden state is the input of the higher



level layer, thus forward dropout drops the hidden state input in the previous layer. According to the
stacked RNN notation, we define it as:

® :
d;’ ~ Bernoulli(p)

‘ 2
W = UORY + wOd(nit)
We sample masks at each layer of our stacked RNN construction. In our experiment, we do not
observe a noticeable difference if we apply forward dropout mask on the input.

4.3 Recurrent Dropout

There has been multiple methods to implement dropout along the recurrent depth. As discussed in
Semeniuta et al. [1], in order to avoid test-time scaling problem: &, = ((((ho+go)p+g1)p+...)p+
g¢)p, we should avoid directly applying dropout mask on the hidden states. So we apply recurrent
dropout as in Equation 4. We follow the practice in [1] and set up a recurrent dropout mask per
sequence, and per batch.
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4.4 Stochastic Dropout

We define stochastic dropout on LSTM, though it can be easily extended to GRU. We choose not to
directly corrupt the data, even though it could be very effective and model agnostic [14]. We sample
a dropout mask D,,qsx ~ Bernoulli(p) where D,,qsx € IRT. Instead of directly dropping the
input or hidden state, we choose to erase the modulated input ¢ - ¢ that is a mixed representation of

previous hidden state and input at current step. We formulate the update rule for LSTM in Equation
5.

et = ft-c—1+ it gt )
Ct = (]l - Dmask) “Ct—1+ Dmask(it ' gt)

By using this formula, when the timestep when D! . = 1, we have ¢; = ¢;_1. The previous cell

state gets sent into the current cell state. This effectively converts the prediction probability from
p(z|wi_1 - x1) = p(x|hy, cr) to p(a|hy, ci—1). Cell state ¢, is used at predicting 2=, as well
as to predict z!. It forces the cell state prior to the dropped time step to contain information that
helps to predict two adjacent output words. This creates a very different effect compared to forward
dropout or recurrent dropout that forbids certain hidden state units or gate activation units to be
inactive. More analysis are provided in Section 6.

5 Experiment

5.1 Word Level Modeling

We conduct word-level language modeling experiments on Penn Treebank. All trained RNN models
have 2 hidden layers and use LSTM units. Weights are initialized uniformly in [0.1,0.1]. We
consider dropout rates for all three types of dropout in {0.05,0.1,0.15,0.2}. We use report results



Scheme « 6 Validation Test
medium models (|h| = 256)

no regularization 0.0 0.0 142 92
forward drop 0.05 144 72
0.1 148 71

0.15 151 93

0.2 159 92

stochastic drop 0.05 146 67
0.1 150 69

0.15 148 86

0.2 151 86

recurrent drop 0.05 142 67
0.1 142 66

0.15 150 95

0.2 144 69

mixed scheme 0.05 0.05 135 62
0.1 0.1 129 68

Mikolov (2012)[18] NA 835
Graves (2013) [20] NA 122
Zaremba et al. (2014) [25] 822 784
Kim et al. (2015) [21] NA 789

Table 2: Word-level sequence cross-entropy loss on Penn Treebank with different dropout schemes.
« is the feedforward or recurrent dropout rate, ¢ is the stochastic dropout rate. In mixed scheme,
we combined stochastic scheme and forward dropout scheme. We report the perplexity calculated
based on sequential cross entropy cost.

for hidden sizes |h| of 256. We unroll for 25 steps and use batches sizes of 50. At the end of the
experiment, our models are trained on average 15 epochs.

We train using Adam optimization [26] with an initial learning rate of 0.002. When the decrease
in mean validation cross entropy is less than 0.01, we divide the learning rate in half. We allow
the learning rate to be decreased 8 times before stopping training and pick the best model based on
sequence cross-entropy cost on the validation set. We report the finding in Table 2.

Except Kim et al. [21], the rest of models are implemented in recurrent neural network with one
layer, compared to our two-layer design. We can easily observe that our model is outperforming
previous models by a big margin even with simple forward dropout. In this setting, stochastic
dropout outperforms forward dropout as well. In the mixed shceme, we combine stochastic dropout
and feedforward dropout, and thus achieving the best perplexity across all our models.

5.2 Character Level Modeling

We also conducted character level language modeling. We use mostly the same parameter as men-
tioned in character-level modeling, except we only unroll 50 steps as opposed to 50 steps. We
calculate the perplexity based on the cross-entropy loss, and our result is compared with other mod-
els.

As we can see, stochastic dropout is a very effective regularization tool compared to the un-
regularized baseline. It performs quite similar to recurrent dropout, but fails to outperform simple
forward dropout in the character-level setting. This shouldn’t be too surprising because there are less
extraneous characters that are unimportant to the word, than extraneous words that are unimportant
to a sequence.



Scheme 6 Validation Test
medium models (|h| = 256)

no regularization 0.0 1.012  1.256
forward drop 0.05 1.014 1.242
0.1 1.008 1.254

0.15 1.007 1.209

0.2 1.007 1.210

stochastic drop 0.05 1.013  1.247
0.1 1.008 1.241

0.15 1.008 1.223

0.2 1.007 1.231

recurrent drop 0.05 1.013  1.247
0.1 1.004 1.221

0.15 1.024 1.225

0.2 1.022  1.245

Table 3: Character-level sequence cross-entropy loss on Penn Treebank with different dropout
schemes. J represents the shared dropout probability. We report the sequential cross entropy cost.

6 Analysis

6.1 Gate Activations

In order to analyze the effect of stochastic dropout, we visualize the gate activations of three mod-
els: an un-regularized model, a feedforward dropout regularized model, and a stochastic dropout
regularized model. All three models use the most optimal trained parameters from Section 5.1. We
only display the gate activations that display the most difference amongst the models, which are the
output gates and forget gates.
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Figure 2: Gate Activations The comparison of gate activations on two RNN layers among three
models: « is the feedforward dropout rate, ¢ is the stochastic dropout rate. Activations are averaged
across all batches.

We can easily observe on Figure 2, the similarity between feedforward dropout-regularized model
and stochastic dropout-regularized model, both display similar shift of gate activations compared to
the unregularized model. The similarity in the patterns could be an indication that stochastic dropout
is regularizing the model akin to other dropout methods, corresponding to our original hypothesis.

We can also observe that stochastic dropout leads to higher means for forget gate in both first and
second layer compared to other two models. This can be reasoned as since we force the model to
use ¢;_ to predict x5! and 2!, it will learn to hold more information, leading to better result for



long-term dependency learning. Also due to the fact that we computed average for gate activations,
we can observe that the effect of dropout methods is time-invariant.

Another evidence to notice is that the forget gate and output gate for the un-regularized model on
the second layer tend to be more left-saturated - more likely erasing information from the previous
time steps. This effect is likely to intensify when the feedforward depth increases. Regularization
such as stochastic dropout or feedforward dropout can encourage gate cells to be less saturated.

6.2 Gradient Decay
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Figure 3: Gradient norm ratios. Computed with respect to cost at final time step.

We set to explore if a model trained with stochastic dropout will have a lower rate of gradient decay
through time, since gradient vanishing has been a major problem for recurrent neural network. We
calculate the 2-norm of the gradient vector backpropagating from the final time step 7' to the first
timestep. We then calculate the ratio of gradient norm between the previous timestep to current
timestep. As we can see in Figure 3, the stochastic dropout-trained model, the gradient tend to show
a slower decay compared to a non-regularized model.

7 Future Direction

In this paper, we examined adding skip-connection along the recurrent depth, but we have not ex-
amined adding skip-connection along feedforward depth. It has always been particularly difficult to
train feedforward deep recurrent neural network, and such difficulty is well explained in Zhang et
al. [2] that feedforward depth does not help retaining long-term dependency. However, in the suc-
cess of deep convolutional neural network [11] [10], one can only wonder what would a feedforward
deep recurrent neural network bring if trained successfully.

Obviously this technique can be easily carried over to Gated Recurrent Unit (GRU) [27], but our
initial experiments have showed mixed result as to whether this improves performance. Since neural
language modeling is a very difficult task, it would be interesting to see this technique being applied
to other tasks such as sentiment analysis or machine translation.

8 Conclusion

We have demonstrated with emprical results the effectiveness of dropping modulated input on time
steps. It is an effective regularizer, and on word-level experiment, we showed the model outperform-
ing other dropout methods. At last, we show that since recurrent neural network has two depths:
recurrent depth and feedforward depth, we can combine the stochastic dropout with feedfoward
dropout and achieve even better performance.
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