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Abstract

This paper presents a recurrent neural network framework for the problem of at-
tributing spoken lines to characters in a screenplay or novel. We study these quotes
as a sequence in the absence of additional context, e.g. descriptions of scenes or
actions, from the text surrounding them. Instead, attributions may only be made
on the basis of learned expectations for how each character speaks, as well as
an understanding of how they converse with each other. We use gated-feedback
recurrent neural networks, trained in a supervised fashion, for modeling both of
these aspects. We evaluate the prediction model on episodes of the television
show Futurama and demonstrate improvement over simpler neural network con-
structions.

1 Introduction

Conversation is a fundamental means for human interaction. Following the back-and-forth thread of
a conversation, as an interactive participant, is essential for constructing mutual understanding, but
beyond this core competence we are generally able to drop in on a discussion already underway and
similarly grasp its flow. Furthermore, after prolonged observation of the same parties conversing,
we start to infer mental models for the speakers and develop expectations for what each speaker is
more likely to say. These speaker models transcend the audible aspects of spoken conversation, and
are founded instead upon the underlying language.

In this work we consider the task of quote attribution (alternately, speaker identification) in the
context of dialogue extracted from literary novels and television or movie screenplays. That is,
given a sequence of unlabeled dialogue text, the aim is to classify each line according to its speaker.
Performing this task well requires both an understanding of the temporal flow and the semantic sub-
stance of the dialogue lines. For example, speakers in a scene are likely to alternate while producing
utterances in keeping with their personalities endowed by their authors.

This problem of purely language-based speaker identification, without the aid of auditory signals
or visual cues, has been previously studied in [2, 4, 5]. In addition to the bare quotations spoken
by each of the characters, these works also consider the addition of context features (e.g., “she
said, ...” or “he said, ...” which imply speaker gender). We note that the approach outlined in this
paper does not make use of such features, but attempts instead to classify only on the basis of the
language of the current and previous quotations. We call this modified setup the dialogue-only quote
attribution problem in this work. Both [4] and [5] take into account past conversational flow when
attributing quotes. In [4], it is assumed that all previous lines are classified correctly according to
their speaker (i.e., through an oracle) as features present when classifying the current line. He et
al. [5] forgo this arguably unrealistic assumption by employing a manually constructed model of
speaker alternation patterns. Chaganty and Muzny [2] apply a neural network-based model for the
quote attribution problem but attends only to the semantic substance of dialogue; their model is not
capable of capturing the notion of an ongoing conversation.
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In this paper we address the problem of speaker identification through the lens of recurrent neu-
ral networks (RNNs). RNN-based approaches to modeling language have recently achieved state-
of-the-art performance [8] particularly owing to their ability to capture context (or in the case of
streaming dialogue, “history”) of arbitrary length. RNNs thus seem a natural choice for learning the
likelihood of a quote belonging to the lexicon of a particular character, as well as how to modify
that likelihood conditioned on the prior sequence of conversation. RNNs capture context by main-
taining a hidden state at each timestep, in addition to the output used for prediction, that emulates
a condensed summary of the preceding timesteps. There are a number of hidden unit constructions
of varying depth and complexity commonly used for updating this state; in this work we focus on
gated-feedback RNNs (GF-RNNs) [3]. The primary contribution of this work is to evaluate the mer-
its of using bidirectional GF-RNNs, at both the word level and line level, for dialogue-only quote
attribution over simpler recurrent and non-recurrent neural network models.

2 Problem Statement

We consider a corpus C = {E1, . . . , EK} consisting of dialogue extracted from a set of television
episodes (or chapters, in the case of a literary novel). Each episode Ek = {`(k)1 , . . . , `

(k)
Nk
} is a

sequence of dialogue lines, and each line `(k)l = {w(k,l)
1 , . . . , w

(k,l)
Mk,l
} is a sequence of word to-

kens, possibly spanning multiple sentences. Each line `(k)l is associated with a label s(k)l denoting
its speaker. Given a corpus of training episodes from the same television show, we consider the
dialogue-only quote attribution problem of assigning speaker labels to lines from a previously un-
seen episode Ẽ stripped of speaker tags. We evaluate the performance of a prediction model using
a weighted average cross-entropy loss; we weight the loss to improve classification accuracy for
less common speakers. To be precise, given one-hot ground truth speaker label vectors y(l) and
corresponding predicted probability vector ŷ(l), we wish to minimize

J =
1

Nlines

Nlines∑
l=1

wTy(l)CE(y(l), ŷ(l))

=
1

Nlines

Nlines∑
l=1

wTy(l)

Nspeakers∑
k=1

y
(l)
k log(ŷ

(l)
k )

 (1)

where w ∈ RNspeakers is a weight vector with higher values for characters that speak less. In
the numerical experiments Section 4, we also present F1 scores (for discrete predictions) for each
character as a way to understand classification accuracy by class.

2.1 Data

The dataset for this work consists of all episode screenplays from seasons 1–5 of Futurama scraped
from http://www.imsdb.com/, the Internet Movie Script Database (IMSDb) For the purposes
of training and evaluation, each line is labeled by the episode number as well as its true speaker label.
No immediate context beyond utterance ordering is taken from the screenplays or novel. We split the
72 Futurama episodes randomly as 54/8/8 training/validation/test; the specific split may be obtained
at https://github.com/schmrlng/RNNQuoteAttribution.

3 Technical Approach

3.1 Preprocessing and Word Vectors

We use the GloVe word vectors [9] trained on a 6 billion token Gigaword5 + Wikipedia2014 corpus
as the initial translation layer in all of the models considered in this paper. We tokenize and lowercase
all quotes in our corpus using the Stanford tokenizer [7] in order to be consistent with the GloVe
data. As the Futurama dataset is relatively small, consisting of 175K tokens spread over 15061
quotations, we do not retrain the word vectors when training the models described below. Given
input tokens {w(l)

t } from dialogue lines (let us assume we are working within a single episode
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and omit the superscript k), let {x(l)
t } be one-hot row vectors into the GloVe embedding matrix

L ∈ R|V |×d. Then this first layer may be summarized by the equation

w
(l)
t = x

(l)
t L. (2)

3.2 Neural Network Model

As described in the introduction, there are two main timescales to consider in quote attribution: (1)
the sequence of words within a particular dialogue line, and (2) the sequence of lines within an
episode. We model each of these timescales with a neural network which we stack to produce the
full prediction model. Layer 1 (which may actually consist of multiple sub-layers) maps an input
sequence of word vectors {w(l)

1 , . . . ,w
(l)
Ml
} to a quote vector ql. Loosely speaking, the intention

of this step is to capture a notion of speaker personality by the types of quote vectors they are
likely to produce. Layer 2 maps a sequence of quote vectors {q1, . . . ,qN} to a sequence of inputs
{z1, . . . , zN} for a final softmax regression layer

ŷ(l) = softmax(zlWs + bs). (3)

The purpose of Layer 2 is to capture the conversational context surrounding each dialogue line.

Character Tokenized Line
Fry dearly beloved , we are here today to remember bender , taken

from us in the prime of life , when he was crushed by a runaway
semi , driven by the incredible hulk .

Bender aww , you knew my favourite cause of death !
Fry now let us each remember the best things about bender in our

own way . professor ?
Farnsworth your standard bending unit is made of an iron- osmium alloy

. but bender was different . bender has a point-04 % nickel
impurity .

Bender it ’s what made me me .

Table 1: An example dialogue exchange from the Futurama episode “A Pharaoh to Remember.”

Table 1 shows an example conversation from the Futurama corpus. The fourth line from Professor
Farnsworth is an example of a quote that could likely be attributed from the corresponding quote
vector alone as he is the only character who uses words like “osmium” and “impurity.” Bender’s
lines can only be reliably inferred from conversational context (e.g., the fact that both Fry and the
Professor mention Bender by name in their lines). Examples of this sort motivate the two layer
approach described in this paper.

3.2.1 Quote Vectors

We consider the following methods for generating quote vectors from arbitrary-length sequences of
word vectors.

Simple Averaging (SA) Basic RNN (B-RNN)

ql =
1
Ml

∑Ml

t=1 w
(l)
t

h
(l)
t = tanh(h

(l)
t−1W1 + w

(l)
t U1 + b1)

ql = h
(l)
Ml

GF-RNN [3] Bidirectional GF-RNN (biGF-RNN)

h
(l)
t = GRU(Σ1,h

(l)
t−1,w

(l)
t )

ql = h
(l)
Ml

~h
(l)
t = GRU(~Σ1, ~h

(l)
t−1,w

(l)
t )

~h
(l)
t = GRU( ~Σ1, ~h

(l)
t+1,w

(l)
t )

ql = [~h
(l)
Ml

~h
(l)
0 ]

where in all cases the hidden states are initialized to zero, i.e., h
(l)
0 = ~h

(l)
0 = ~h

(l)
Ml+1 = 0, and

the gated recurrent unit ht = GRU(Σ,ht−1,xt) of Chung et al. [3] is defined with parameters
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Σ = (W(z),U(z),W(r),U(r),W,U) as:

zt = σ(xtW
(z) + ht−1U

(z))

rt = σ(xtW
(r) + ht−1U

(r))

h̃t = tanh(xtW + rt ◦ ht−1U)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t.

3.2.2 Conversational Context

We consider the following methods for generating the zl from ql.

Simple Nonlinearity (SNL) Basic RNN (B-RNN)
zl = tanh(qlW2 + b2) zl = tanh(zl−1W2 + qlU2 + b1)
GF-RNN [3] Bidirectional GF-RNN (biGF-RNN)

zl = GRU(Σ2, zl−1,ql)

~zt = GRU(~Σ2,~zl−1,ql)

~zt = GRU( ~Σ2, ~zl+1,ql)

zl = [~zl ~zl]

We note that the Simple Nonlinearity layer treats each dialogue line independently and does not
actually capture any conversational context — it simply provides a layer of non-linearity for use
with the Simple Averaging quote vector model. We chose to study the GF-RNN in this work as the
design of the gated recurrent unit (GRU) serves as an appropriate proxy for the multiple timescales,
i.e., scene and alternating dialogue within a scene, at play in a narrative.

4 Numerical Experiments

4.1 Implementation Details

We implemented the models defined by each (Layer 1, Layer 2) pair using the TensorFlow sys-
tem [1]. We trained the models to minimize the loss function (1) plus an additional L2 regular-
ization term (λ/2)‖W‖2F for each weight matrix W. We took λ = 10−4 for all weight ma-
trices at all layers. As an additional form of regularization we applied dropout [10] throughout
the models with a keep probability of p = 0.9. For recurrent layers of the models, we applied
dropout only on the layer inputs and outputs (not the internal state connections) as suggested
in [11]. We used the word vector embedding with dimension d = 100 (see Equation (2)) from
http://nlp.stanford.edu/data/glove.6B.zip [9]; the dimensions of the outputs ql

and zl from Layers 1 and 2 respectively are equal to the dimensions of the inputs, unless the
layer is biGF-RNN, in which case the output dimension is doubled. We chose the cross-entropy
loss weights w in Equation (1) proportional to the inverse frequency of each speaker’s lines in
the training corpus. The code for this paper and the tokenized Futurama dataset may be found at
https://github.com/schmrlng/RNNQuoteAttribution.

4.2 Experimental Results

A comparison over model specifications is presented in Table 2, and the confusion matrix for the
best-performing model (biGF-RNN, biGF-RNN) is detailed in Table 3. Overall model performance
is evaluated according to the weighted cross-entropy loss (1) on the test set of episodes. Concrete
predictions for each dialogue line are selected according to the largest value in the prediction vector
(Eq. (3)), i.e., ypred = argmax ŷ(l). Performance within each class is then evaluated according to
the F1 score, the harmonic mean of precision and recall.

From Table 2 we note that having high quality quote vectors ql is the most important factor in
determining model success. Indeed, the (B-RNN, SNL) model performs worse than the basic (SA,
SNL) model, suggesting that when lines are long (potentially multiple sentences and 100+ tokens) an
average over the component word vectors is a better choice than the basic RNN model for semantic
summarization. Taking into account conversational context is of secondary concern, but doing so
still contributes to a more accurate quote attribution model. This is potentially explained by the idea
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Model Specification Weighted
CE Loss

Test F1 Scores

Layer 1
(Quote

Vectors)

Layer 2
(Conv.

Context)

Val
Loss

Test
Loss

Other
(0.46)

Fry
(0.66)

Bender
(0.69)

Leela
(0.74)

Farns-
worth
(1.04)

Zoid-
berg

(1.34)

Amy
(1.50)

Hermes
(1.58)

SA SNL 1.241 1.321 0.573 0.285 0.014 0.206 0.016 0.032 0.055 0.000
SA B-RNN 1.248 1.335 0.578 0.311 0.027 0.087 0.000 0.000 0.048 0.000

B-RNN SNL 1.254 1.340 0.534 0.258 0.044 0.136 0.000 0.036 0.096 0.054
SA GF-RNN 1.223 1.303 0.580 0.259 0.046 0.184 0.047 0.000 0.075 0.000

GF-RNN SNL 1.206 1.261 0.505 0.344 0.227 0.300 0.172 0.115 0.112 0.043
GF-RNN GF-RNN 1.182 1.181 0.594 0.377 0.352 0.369 0.310 0.238 0.215 0.000

biGF-
RNN

GF-RNN 1.161 1.182 0.580 0.452 0.290 0.350 0.330 0.185 0.158 0.075

GF-RNN biGF-
RNN

1.179 1.185 0.525 0.446 0.330 0.337 0.287 0.217 0.188 0.000

biGF-
RNN

biGF-
RNN

1.174 1.176 0.534 0.452 0.385 0.323 0.322 0.175 0.183 0.030

Table 2: Model comparison results for the Futurama test corpus. The speaker classes included the
seven main crew members and an eighth class consisting of all other speakers. Cross-entropy loss
weights (see Equation (1)) are given below the names of each character. Compared to Bender, it
seems that Leela has a particularly distinctive speaking style, as even though she speaks less, most
of the models are able to detect her lines reasonably accurately.

that speakers are identified most clearly through the personality of their speech; we fall back on
conversational context and positive identifications of surrounding characters if our initial impression
of the quote leaves us unsure. Introducing bidirectionality increases the prediction accuracy slightly
(again this holds particularly true for Layer 1) and the best model by test loss is (biGF-RNN, biGF-
RNN).

Predicted Speaker
Actual
Speaker

Other Fry Bender Leela Farns-
worth

Zoid-
berg

Amy Hermes Precision Recall

Other 350 69 44 91 74 9 25 16 0.552 0.516
Fry 58 138 23 43 13 6 13 4 0.440 0.463
Bender 88 43 87 35 12 4 6 4 0.502 0.311
Leela 60 29 8 82 13 2 21 2 0.282 0.377
Farnsworth 28 11 4 12 46 4 3 2 0.261 0.418
Zoidberg 17 8 1 4 7 7 1 2 0.212 0.148
Amy 23 12 1 13 5 1 14 0 0.166 0.202
Hermes 10 3 5 10 6 0 1 1 0.032 0.027

Table 3: Detailed test set results for the (biGF-RNN, biGF-RNN) model. The confusion matrix
showing counts of actual speaker (by row) vs. the model’s predicted speaker (by column) is on the
left side, and the precision and recall statistics for each class are on the right side.

From Table 3 it is clear that the “Other” class dominates the predictions. This is potentially due to
the existence of many one-off, single-episode characters in Futurama with varied personalities that
can mimic any of the main crew members. The plurality of “Other” characters also affects the ability
of the model to learn conversational flow, as some conversations are dominated by multiple “Other”
characters. In Table 4 we show test results for predicting the speaker of lines known a priori to be
spoken by the seven main crew members. The model is near-50% accurate in identifying each of
the four most common speakers, but has a very difficult time identifying Hermes, who throughout
the corpus only speaks 1/6 as much as Fry.

5 Conclusions

We have shown that using gated-feedback recurrent neural networks for both quote summarization
and conversation following provides improved performance over simpler neural network models at
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Predicted Speaker
Actual
Speaker

Fry Bender Leela Farns-
worth

Zoid-
berg

Amy Hermes Precision Recall F1

Score
Fry 162 31 55 17 8 16 9 0.543 0.543 0.543
Bender 49 127 50 20 5 12 16 0.648 0.455 0.534
Leela 39 17 103 23 3 29 3 0.384 0.474 0.424
Farnsworth 14 8 18 53 5 5 7 0.392 0.481 0.432
Zoidberg 12 3 10 7 7 2 6 0.233 0.148 0.181
Amy 18 3 19 7 2 19 1 0.223 0.275 0.246
Hermes 4 7 13 8 0 2 2 0.045 0.055 0.050

Table 4: Test set results for the (biGF-RNN, biGF-RNN) model when predictions were taken as the
argmax over the prediction vector ŷ restricted to non-“Other” characters; the counts for lines truly
spoken by “Other” characters are omitted.

Figure 1: Futurama character word vectors visualized with respect to a selection of other words.

the task of dialogue-only quote attribution for screenplays and novels. Yet there is clearly still much
room for improvement. Alternative methods of quote summarization, e.g., [6], may provide more
accurate windows into speaker personality. Allowing for selective retraining of word vectors, in
particular for tokens corresponding to speaker names, may also lead to better performance. Figure 1
shows the GloVe word vectors for a selection of character tokens (plus a few additional words) plot-
ted by their components along the vectors’ first two principal axes. In the context of the Gigaword5
+ Wikipedia2014 corpus, all of the Futurama characters are essentially equivalent. For the purpose
of quote attribution, however, we’d like the word “bender” in the exchange from Table 1 to send a
strong signal that the next speaker is likely to be Bender. We expect that such word vector retraining
would increase the benefits provided by using a recursive neural network in Layer 2 (conversational
context).

Besides improving the performance of supervised dialogue-only quote attribution, however, the
model specifications described in this paper might be useful in future work for unsupervised cluster-
ing of speakers. Indeed, this two layer outline can be used to model sequential interaction between
any underlying generative models of data sequences, not just characters in narratives producing
words of dialogue. In particular the author of this paper was motivated in this work by the idea of
using recursive neural networks to model robotic interactions, where the actions (“speech”) of an
agent are highly determined by its intent (“character”) as well as its ongoing interaction (“conversa-
tion”) with other agents in its environment.
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