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Abstract

Concept linking, or linking spans of text to concepts in a knowledge graph (KG), is
an important first step in tapping into the wealth of information stored within KGs.
Use of terminologies and vocabularies is especially prominent in the biomedical
domain, where significant engineering effort has been made to ensure that rich
KGs with standardized vocabularies are available.

In this project, we present an approach based on recurrent neural networks (RNNs)
that learn mappings from textual spans to concepts of a knowledge graph. Our
method achieves generalization by using vector-based representations for con-
cepts, and predicting all concepts along a hierarchy traversal, which is a richer
prediction target that can also enable the model to gracefully handle unseen con-
cepts.

Our main result is that we are successfully able to train a RNN-based model to
mimic a complex set of morphological and syntactic transformations applied by
a state-of-the-art rule-based system, and generalize better than the rule-based sys-
tem on concepts not present during training time. The RNN also learned embed-
dings of phrases which are invariant several of the phenomena required to normal-
ize text, such as word order inversion, synonym replacement, and noise in the span
boundary. Unfortunately, we are not able to outperform the rule-based method on
the original task when the train and test sets overlap.

As part of this project, we also present a method to automatically label a large
dataset for concept linking in clinical text, which opens new opportunities to apply
machine learning and deep learning methods in this domain.

1 Introduction

Knowledge graphs (KGs) codify a large amount of knowledge in a symbolic representation that is
easy for algorithms to use and perform inference on. However, an inherent disadvantage of knowl-
edge graphs is that they are generally hand-engineered by many people, relatively brittle due to
their symbolic nature, and utilizing the encoded knowledge is not a trivial task. Several challenges
in using knowledge graphs include having concepts that are either too specific or too general, in-
consistencies in the same property is represented in different parts of the graph, and concepts with
ambiguous names. Moreover, knowledge graphs generally only grow by adding new concepts and
relationships, as refactoring is very expensive.

In this project, we tackle the problem of concept linking using recurrent neural networks (RNNs)
with a specific focus on being able to generalize to unseen concepts at test time, by using vector-
based concept representations that share features and predicting the entire traversal through the
hierarchy as our target. The advantage of predicting traversals is two-fold: first, the model fails more
gracefully since it can fall back to predicting a coarser concept, and second, the model becomes more
interpretable since the model is forced to produce multiple partial predictions.

We apply our method to the medical domain, where a significant amount of data is recorded in
plain text medical records written by doctors while treating patients. Concept linking is a common



pre-processing step used for many downstream processing tasks such as search, indexing, and fea-
turization. This in turn is used for tasks such as cohort selection, diagnosis and phenotyping, etc.
Both model interpretability and robustness to noise are invaluable in the medical domain. The abil-
ity to generalize to unseen concepts is also important because annotated data is very scarce, so it is
impossible to see every concept during training, and the knowledge graph does not always have the
correct granularity to represent a concept.

2 Background

As described earlier, concept linking is an integral part in biomedical informatics pipelines. A popu-
lar and fast method is simply exact string matching against a database of synonyms [[1], which has the
advantage of very high precision but unfortunately also suffers from low recall. The ShARe/CLEF
eHealth Challenge was a recent [4] (2013) competition which benchmarked two tasks: span recog-
nition and concept linking. Here, a rule-based algorithm [8]] which applies various transformations
such as stemming, suffix replacement, acronym expansion, etc. achieved state-of-the-art results on
medical record span recognition. Like exact string matching, rule-based methods achieve high pre-
cision but struggle with tasks requiring softer reasoning such as synonym replacement (’bleeding”
vs “hemorrhage”).

Due to our goal to generalize to unseen concepts during test time, our new problem formulation is
similar to paraphrase and semantic similarity tasks, in which people have applied methods such as
siamese convolutional networks [3]] and tree-structured RNNs [9]].

Our models in particular are based on recurrent neural networks (RNNs) and sequence-to-sequence
models, which have proven to be effective in tasks such as machine translation [6] and parsing [10].

In our project, we use Gated recurrent units (GRU) [2], which are a specific form of recurrent neural
network which contain architectural modifications to mitigate the vanishing gradient problem. The
forward propagation equations for GRUs are specifically:
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Where 1, ...z is the input sequence, and © represents element-wise multiplication.

3 Approach

3.1 Data

We have two primary sources of data - the knowledge graph (from SNOMED-CT), and the input-
output pairs of our model, which are spans of text and annotated concepts, respectively (from either
ShARe/CLEF or Synthetic).

3.1.1 SNOMED-CT (Systematized Nomenclature of Medicine — Clinical Terms)

SNOMED-CT is a general, publicly available medical knowledge graph. We use a 182,719 concept
subset of SNOMED which includes diseases, symptoms, and other medical findings. Our main use
of SNOMED is it’s concept hierarchy (“is-a” relationships). To remove SNOMED’s DAG inheri-
tance structure, we deterministically select the node with the most leaf nodes if a node has multiple
parents.

An example of SNOMED’s hierarchy can be seen in figure
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Figure 1: An excerpt of SNOMED’s hierarchy for the concept “Heart failure”. SNOMED has a
DAG inheritance structure, as seen by the 3 parents of ”Heart disease”.

Brief Hospital Course:

53 yo woman with history of [CAD:Coronary Artery Disease] and
[CHF :Congestive Heart Failure].s/p 6 weeks IV antibiotics
presents with [arthritis:Arthritis], [blood in stomach:Gastric Hemorrhage].

Figure 2: An typical example of our synthetic data. Labeled spans are highlighted in blue, with the
gloss/mention span to the left of the colon and the name of the concept on the right.

3.1.2 MIMIC-III (Medical Information Mart for Intensive Care)

MIMIC-III is a collection of roughly 50,000 medical records collected by doctors from an ICU, pro-
vided by the MIT Lab for Computational Physiology. These notes are raw text, and lack annotations
and concept labels. We use this text as part of our synthetic dataset (see section 3.1.5).

3.1.3 ShARe/CLEF eHealth Challenge 2013

The ShARe/CLEF dataset is 297-note a subset of MIMIC which contains spans and human-labeled
annotations. Since this is our only source of gold labels, we use this dataset in our evaluations.
ShARe/CLEF also contains spans marked as "CUI-less”, meaning they do not correspond to an
exact concept in SNOMED, but from our observations, there is often a reasonable coarser concept
to assign. There are roughly 11167 annotated spans in total, 3374 which as "CUI-less”.

ShARe/CLEF is a subset of a SemEval 2015 challenge, but out application to use that dataset was
unsuccessful.

3.1.4 UMLS Metathesaurus (Unified Medical Language System)

UMLS is a conglomeration of medical lexicons and ontologies (including SNOMED-CT). The
metathesaurus provides correspondences between concepts in the various sources, which gives us
a set of synonyms for each concept. These synonyms are used in the rule-based system we use to
generate additional training data (see section 3.1.5).

3.1.5 Synthetic Dataset

In order to generate additional data, we applied a rule-based method based on [§] to MIMIC-III in
order to generate roughly 80,000 unique spans with concept labels. We run a sliding window (of
sizes 1, 2, 3, and 4) over raw text, and create a (span, label) data point if the rule-based method
identifies a concept. When compared with gold spans in ShARe/CLEF, we get 89.4% precision and
56.5% recall, excluding CUI-less concepts, making this a reasonable method. We would rather to
err on the side of high precision and low recall than high recall and low precision.

Additionally, we apply the expansion rules to the synonym sets from the UMLS Metathesaurus -
these include inserting stopwords, suffix transformations (ex. “dilated” to “dilation”), word order
inversion, etc. to generate another set of training examples. This is similar to data augmentation
done in other fields such as vision (ex. rotating and translating images).
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Figure 3: A high level diagram with all components of our model. The red dots represent inner
products. Note that only one of the decoders is used at a time.

3.2 Model

We divide our model into 3 main components: the span encoder, the concept encoder, and the
decoder. The inputs to our model are the spans of text, and the labels are a list of concepts in the
hierarchy representing a traversal (we start at the root concept and end on the actual concept).

A high level diagram of our model shown in figure[3]

3.3 Span Encoder

Our span encoder is a 2-layer, 256 unit LSTM which reads as input the input span represented as
word vectors (pretrained with GloVe [[7]]), and produces a 256-dimensional span embedding e, as its
output, which corresponds to the hidden state of the last timestep.
Let z; denote the sequence of word vector inputs.

hi4 = GRUq (2, h4—1)

hot = GRU2(hy ¢, hot—1)

es = [hi,7, har)"
3.4 Concept Encoder

The concept encoder produces a 256-dimensional embedding e, for each concept by averaging the
embeddings of its 4-grams (the 4-gram embeddings are randomly initialized). We then stack these
vectors as a matrix .

Let the ngrams of a concept be labeled n4 through ny:
€ei = mean(nil, 12, nzk)
T
E. = [ecla €c2, ]
This was originally a copy of the span encoder to form a Siamese network, but training was too
slow, even on toy data, due to the large concept vocabulary. We also attempted to incorporate the
other major source of information that could provide generalization, the structure of the hierarchy, by

incorporating a “routing” vector which was a function of the concept vectors of a concept’s children,
but this also turned out to be infeasible computationally.

3.5 Decoder

We implemented two possible decoders, which read the span and concept embeddings to predict
output concepts. For both decoders, we use a sampled cross-entropy loss function (flat decoder uses
0-1 cross entropy, sequence decoder uses multi-class cross entropy) summed over training examples,
and averaged across timesteps in the case of the sequence decoder.

N
L= Z CEsampled(yiv :l]z)
i=1



3.5.1 Flat Decoder

Our first decoder simply takes the dot product of each span (after projecting it to 256 dimensions)
and concept embedding, and feeds each into a sigmoid to produce a probability for each concept.

€s,proj = Wproj€s
)= 0(Fecspro)

In this decoder, the label is a sparse vector with ones in locations corresponding to concepts along
the traversal. Thus, this model has no notion of the order in the traversal. In order to recover a
traversal, we can apply a greedy decoding method [3]] which repeatedly accepts the highest scoring
concept if it is consistent with the previously selected concepts, and then filling in the blanks to
complete the traversal if necessary.

3.5.2 Sequence-to-Sequence Decoder

The second decoder involves running a second 2-layer, 256-unit LSTM during decoding to produce a
sequence of concepts corresponding to the traversal. The hidden state of the each layer is initialized
with the final hidden state of the the respective layer in the span encoder.

ho = eg
hit = GRU (¢, hit—1)
hay = GRUz(hy ¢, hoi—1)
Je=mO hoy

Where m is a mask which contains 1 in locations corresponding valid children along a traversal
(only used during test time).

3.6 Data phenomena

Here we describe in detail some of our intuitions about the phenomena in the dataset, and how our
approach addresses them:

1. Synonyms (Ex. ”lung” vs “pulmonary”) - We use pretrained word vectors as part of our
input representation.

2. Morphology (Ex. “left ventricular dilation” vs “left ventricle dilated”) - We use n-grams as
part of our input representation.

3. Acronyms and abbreviations (Ex. "CHF” vs ”Congestive Heart Failure”) - We rely on the
synthetic dataset to enumerate these in the training set.

4. Word order/stop words (Ex. pain in chest” vs. ’chest pain””). We also rely on the synthetic
dataset to enumerate these out, and hope that the model to generalizes.

5. Context (Ex. ”"PLT” vs. platelet” vs “primary lymphocyte test”) - We ignore this case
since it is actually rare in our dataset. If we were to tackle this problem, we can simply
create embeddings for the context in a similar manner to the mention span.

3.7 Implementation

Our model was implemented in Tensorflow, and trained on a computer with an NVIDIA GTX 970
graphics card with 4GB of RAM. Training each model took approximately 8 to 12 hours.



| Model | Synthetic [ ShARe/CLEF | S/C New Concept | S/C New Concept (Relax) |

Flat Decoder 96/94/95 80/72/76 40/25/31 60/33/43
Seq2Seq Decoder | 93/94/93 40/7/13 10/2/3 22/10/14
Sieve Model [8] 100/100/100 | 99/91/95 98/8/15 98/8/15

Table 1: Precision/Recall/F1 scores for each model on each evaluation task.

4 Experiments

We perform evaluation for 3 models (Flat decoder, Sequence decoder, and the rule-based sieve model
[8] baseline) on 4 different tasks:

1. Synthetic: This evaluation measures performance on our synthetic dataset generated by the
rule-based sieve model. We train on 700,000 spans and test on 300,000 spans.

2. ShARe/CLEF: This evaluation measures performance on the original 2013 challenge.
There are 199 train notes, and 99 test notes. The train set contains 5816 spans, and the
test contains 5351.

3. ShARe/CLEF New Concepts: This evaluation measures performance when the test con-
cepts are excluded from the train set. All models have access to the synthetic dataset in this
case.

4. ShARe/CLEF New Concepts, Relaxed: This evaluation measures new concept perfor-
mance, except we allow the models to predict up to 5 concepts, and count any as correct if
they are within 2 steps according to SNOMED’s concept hierarchy.

Results for each evaluation are shown in table[T]

Unfortunately, while the sieve model is publicly available on GitHub, we were unable to obtain code
for any other systems for the ShARe/CLEF challenge, and thus lack other baselines to compare
against.

4.1 Analysis

As expected, both of our neural network models perform poorly on the original task, likely because
of extreme lack of data (only 5800 training examples, compared to the equal sized test set). Thus, it
would be expected that the rule-based method performs very well.

The sequence decoder performed poorly, most likely because its task is much harder (it must predict
the traversal in order), and more importantly, the concept embeddings currently lack information
pertaining to the hierarchy. As a toy example, consider seeing the span ”dog” and trying to predict if
itis a "mammal” or a “reptile”. If the "mammal” concept vector looks like the "dog” concept vector,
this task would be easy, but with our embedding method we cannot look ahead to the children of
“mammal”. Thus, it is forced to memorize these relationships without opportunity for generaliza-
tion.

The flat decoder model showed promising ability to mimic the rule-based system, as evidenced by
its high accuracy on the synthetic evaluation. A PCA plot showing our span embeddings is shown
in figure[d] It also shows promising ability to generalize in the new concept setting, but the accuracy
is still low and would not be usable in a real-world setting.

5 Conclusions and Future Work

In this project, we have presented a recurrent neural-network based method for concept linking on
clinical text. We also automatically construct a large, supervised dataset for this task when previ-
ously only several thousands of annotated examples were available, which is woefully inadequate
for machine learning systems when there are over 100,000 possible labels. While we have not yet
achieved performance that is usable on a real world task, the model seems promising and there are
many places where we cut corners that could result in greatly increased performance.
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Figure 4: 2-dimensional PCA projections of span embeddings generated by the flat decoder model.
The encoder shows moderate ability generalize to word order, stopwords, synonyms, etc.

The most significant component that could be improved is the concept embedding. We currently
use a very crude 4-gram average which ignores ordering and context around the n-grams, and in-
formation from the hierarchy. As mentioned in the modeling section, we tried a Siamese network
approach to the concept embeddings and a “’routing” vector approach where each parent’s concept
vector was a function of its children, but these incurred significant computational cost since the
number of concepts is so large. A possible avenue for further investigation is on how to make effi-
cient approximations to these procedures, which could provide richer vector-based representations
for concepts.

Another interesting aspect we ignored was the DAG-structure of the hierarchy. For example, the
stomach is both a structure in the digestive system and a structure in the abdomen. This means
there are multiple correct paths to leaves, which breaks the greedy decoding method of [3]. A DAG
structure could help decoding methods similar to beam search, since multiple paths converging to
one concept would boost confidence for that concept.

A third path we can explore is a bootstrapping approach to learning our model in an unsupervised
fashion. We already perform the initial labeling using a rule-based method, but it may be possible
to increase the quality of the training data using a principled bootstrapping method.
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