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Abstract 7 

Stack Overflow is a website that is used by software developers extensively 8 
to ask and answer questions about software development. Each day they 9 
reportedly receive over 6000 questions. Due to this high volume of questions 10 
it is difficult and time consuming to analyze them all and determine which 11 
should be left open and which should be closed for a variety of reasons.  12 

This project aims to provide a method to assist in detecting what questions 13 
should be closed and which should remain open. Looking at this problem as 14 
a sentence classification problem one can use deep learning and neural 15 
network models to train a system that will identify good candidates for 16 
closing. With the help of a large dataset provided by Kaggle and Stack 17 
Overflow, one can use algorithms that are effective in tasks such as sentiment 18 
classification and see how they apply to this task.  19 

To evaluate the success of these models, they are compared to several 20 
benchmarks as well as to other competitors in the competition. The multiclass 21 
log loss is used as it was in the competition to facilitate this comparison. 22 
Different models and sets of word vectors are used and their log losses are 23 
compared to determine which system works best.  24 

In addition to the natural language processing that is done on the text of the 25 
question, there are some numeric features which are utilized such as the 26 
question asker’s reputation. Similar tests will be done to see if incorporating 27 
these features in the model provides better results. Overall this project aims 28 
to show that a good estimate of what questions should be closed can be given 29 
by a neural network based prediction model.  30 

 31 

 32 

1 Introduction  33 

Stack Overflow is a website that is used by developers throughout the world to ask and answer 34 
questions that they may have related to software development. Among the reportedly 6000 35 
questions Stack Overflow receives every weekday, many are inadequate to make it onto the 36 
site. These questions can be closed for being off topic, not constructive, not a real question, 37 
or too localized. With this many questions it is difficult to inspect each one so an automated 38 
process to assist in determining what should be closed is very helpful.  39 

The was recently a Kaggle competition to solve this very issue which includes a dataset of 40 
questions, metadata about each question, and whether it was left open, or the reason it was 41 
closed. This dataset provides a good set of training and testing data to build a neural network 42 



to try to create an automated system for making the determination on if a ques tion should be 43 
closed. 44 

The first task to consider is how to model the actual words that make up each of the questions 45 
in our neural networks. Word vectors are used to represent the words within each question and 46 
consist of numeric vectors of some dimension (often 50-100). These word vectors are a 47 
representation of how words appear in relation to each other in a large corpus of documents. 48 
This project attempts using a pretrained set of word vectors that is well regarded in the field, 49 
the GloVe vectors. Additionally, a new set of vectors is trained using the Stack Overflow 50 
dataset which incorporates the technical stack overflow terms that may not be in the GloVe 51 
set. These two sets of word vectors are compared to see which has better performance.  52 

There are many neural network models that could be applied to this problem. Primarily for 53 
this project there are two main neural network models that are considered. The first is a system 54 
that averages these word vectors and uses those as the input to a traditional mult i-level neural 55 
network is used. This has some shortcomings such as not taking into account sentence 56 
structure. Secondly a convolutional neural network model is used that passes over the words 57 
in each question to consider them in groups. Each of these filters, or convolutions, outputs 58 
some estimate that is then pooled together. The result of this is used to make a prediction on 59 
what class that input belongs to. This does a better job of including sentence structure but is 60 
more complicated and time consuming to run. 61 

The other portion to consider is how to incorporate numeric features in addition to these word 62 
vectors. Each question includes some numeric features such as the user’s reputation at the time 63 
of asking or how many open questions they have at the time of asking. The main method of 64 
including these features is taking them on to the end of each word vector so that they can be 65 
included in the training. Training with these features is compared to training without to see 66 
which is more helpful. 67 

In order to gauge the performance of these models the log loss metric is used. This is the 68 
metric that was used during the Kaggle competition which will allow comparison with other 69 
competitors. Additionally, the loss of these models will be compared to some baselines. This 70 
will include making a uniform prediction of each class as the most naïve baseline, as well as 71 
one based purely on the class distribution in our training data. Lastly Stack Overflow has 72 
provided a machine learning model they created to compare against other submissions.  73 
Overall this project aims to beat both more rudimentary baselines and be near many of the 74 
other Kaggle submissions in performance. 75 

 76 

2 Background/Related Work  77 

This problem can be treated primarily as a classification problem where the main goal is to 78 
take in one stack overflow question and the metadata associated with it, and classify it as one 79 
of 5 categories: open, off topic, not constructive, not a real quest ion, or too localized. This 80 
problem is a familiar topic in natural language processing called sentence classification. It has 81 
been studied before and many people have proposed solutions. A common task that is used as 82 
an example in these studies is doing sentiment analysis of things like movie reviews [1]-[4]. 83 

The first aspect in these sort of problems is representing the words in these sentences as word 84 
vectors. These word vectors are generally generated by creating a matrix of what words are 85 
near each other in a large corpus. Usually this corpus consists of things like Wikipedia. One 86 
popular word vector representation is the GloVe system which creates a cooccurence matrix 87 
and then reduces it using techniques like SVD [5]-[6]. Another model is called word2vec or 88 
the skipgram model and learns word vectors on the fly using a predictive model [7]. One can 89 
use vectors trained in either way for a neural network model.  90 

Once a method or representing the questions has been determined, it is prudent to investigate 91 
what models will best make the associated classification. One easier yet surprisingly powerful 92 
solution is to just average the word vectors that are used in the sentences. This does not hold 93 
the structure of the sentence but can capture some meaning. Another technique makes use of 94 
recursive neural networks which feeds the sentences into a set of similar network levels that 95 
share a single weight matrix and feed into the next one, capturing the result of all the words 96 
before it [8]. This model suffers from a vanishing gradient issue where it forgets about older 97 



words as time goes on and the gradient becomes weaker.  98 

Two other techniques help lessen this gradient problem by using as building blocks of their 99 
network a layer that has some “memory”. Gated Feedback Recurrent (GRUs [9]-[10]) and 100 
Long Short-Term Memory (LSTMs [11]) neural networks keep track of more information from 101 
previous parts of the sentence.  102 

Another system that takes into account structure is convolutional neural networks [3]. These 103 
networks take a filter and do a convolution over the sentence. It looks at some number of 104 
words and passes along the sentence making predictions based on those words. This can 105 
happen multiple times and in the end the results are pooled to make a final prediction. Overall  106 
these technique provide several different ways that sentences can be processed and classified 107 
based on a set of training data. 108 

 109 

3 Approach 110 

The approach that is taken in this paper explores two different models and compares them with 111 
various input types. Additionally, it makes use of two different sets of word vectors and 112 
compares them to gauge which is more applicable. These different techniques are trained 113 
against a large dataset of questions provided by Stack Overflow and are then tested on a 114 
separate subset of those questions. The baselines are also computed on that training set and 115 
are used to compare these values to the other Kaggle competitors.  116 

The two kinds of word vectors that are considered are the GloVe vectors that are mentioned 117 
above and ones that are trained specifically on the corpus of training data that we are using. 118 
The GloVe vectors are pre trained and are known to do a good job at expressing the ways that 119 
word correlate with one another. However, they are trained on a corpus of Wikipedia and 120 
Gigaword [12] so they may be missing some technical terminology that Stack Overflow uses. 121 
In an effort to overcome this a large set of Stack Overflow questions is also used to generate 122 
another set of word vectors that may be better suited to this task.  123 

Next the first model that is tested should be discussed. This model is an averaging of all the 124 
word vectors in each sentence. This resulting word vector is then fed into a neural network 125 
and is trained against the dataset of questions. This neural network takes in the average word 126 
vector, runs it through some number of hidden layers which multiply it by various weights 127 
which are learned during training. The final layer combines all of these into a final prediction 128 
of open or closed.  129 

 130 

Figure 1. Averaging Word Vectors 131 

The next model that is used is a convolution neural network model. This type of model takes 132 
filters of various sizes and applies them over the word vectors. These filters are passed over 133 
the words in the sentences in sets that are the size of each filter. Then these filters outputs are 134 
pooled together and used to make a prediction much like in the model before. In this model, 135 
the actual structure of the sentences matters and influences the final results.  136 

 137 



 138 

Figure 2. Convolutional Neural Network [13] 139 

The other main consideration is how to incorporate the numeric features in each of these 140 
models. As was mentioned before, each question also includes the reputation of the user and 141 
the number of other open questions they have. This information can be very helpful in 142 
determining if a question should be open as someone with high reputation is much more likely 143 
to submit a question correctly. The technique that is used here is to include those two values 144 
in the end of the word vectors. For averaging word vectors it is done after they are averaged 145 
and for the convolutional network they are added to every vector. This allows them to be 146 
included in the neural computations just like any other feature.  147 

Lastly some discussion of the metric that is used to evaluate these models is important. The 148 
Kaggle competition used the mutli class log loss. As will be seen later on the dataset that is 149 
used has a highly biased distribution towards the open category. This means most all models 150 
will achieve high accuracy as well as very similar precision and recall so these metrics are not 151 
overly helpful. In order to compare these models to the baselines and the other competitors 152 
the log loss is used here as well. The equation for the log loss multiplies the log of the 153 
probability for the correct class of each input and averages them all.  154 

Log Loss: −
1

𝑁
∑ 𝑦𝑖log⁡(𝑦𝑖̅)𝑖  155 

 156 

4 Experiment  157 

 158 

4 .1  Da ta se t  159 

The dataset that was used is a very large collection of Stack Overflow questions coming from 160 
Kaggle and Stack Overflow. In total it has around 3.4 million questions. The dataset 161 
distribution is heavily weighted towards the open class. Stack Overflow has stated that around 162 
6% of their questions are close with even less being marked as closed in the training data. This 163 
data was split up as 60% training, 20% dev, and 20% final testing.  164 

 165 

Training 2,022,318 60% 

Development 674,106 20% 

Testing 674,106 20% 

Figure 3. Distribution of 3,370,530 questions in dataset  166 



 167 

Figure 4. Distribution of class labels 168 

The dataset includes the following features that are useful in training a neural network:  169 

 Question Title 170 

 Question Text 171 

 Submitter’s stack overflow reputation 172 

 Number of questions submitter has open at time of submission 173 

Here is a sample entry for a question that was marked as closed: 174 

Users reputation: 32 175 

Users other open question count: 0 176 

Title: List of all .txt file 177 

Text: I want to write a program that give a path in my system and goes to that path and 178 

search in that path and sub-directory of path and list all of .txt file. please help me 179 

thanks . 180 

Label: not a real question 181 

4 .2  Resu l t s  182 

To begin the values of log loss on the test set for each of the baselines was collected. As was 183 
mentioned before the uniform baselines predicts evenly across all classes and provides a 184 
very bottom baseline. Next is a baseline that predicts the same distribution as the dataset 185 
distribution that was mentioned above. This is a better baseline in that it predicts open 186 
heavily and is almost always right. The goal is to improve upon this baseline. The last 187 
baseline is the one based on the model that was given by the Stack Overflow team as their 188 
baseline for predicting. This improves upon the frequency distribution baseline substantially 189 
and is a good goal for these models to achieve.  190 

The first experiment was to train the averaging model with both GloVe word vectors and the 191 
Stack Overflow trained vectors, then compare the final log loss with the baselines and the 192 
other Kaggle competitors. Unfortunately, the correct labels for the final submission in the 193 
Kaggle competition were not made available so this comparison can only be made in 194 
comparison to these three baselines. Secondly, the same experiment is done using the 195 
convolutional model. On this experiment however, the GloVe vectors were excluded as it 196 
was seen that the Stack Overflow trained word vectors performed better.  There was also 197 
some work done to try resampling the dataset to compensate for the uneven class 198 
distribution, and then readjusting the predictions based on their correct distribution in Stack 199 

97.92%

0.91% 0.52% 0.46% 0.18%

Open Not a real question Off topic Not constructive Too localized

Distribution of Class Labels



Overflow questions. However, this did not prove to help and was abandoned.  200 

 201 

Method Log Loss 

Uniform Prediction Baseline 1.609 

Averaging Stack Overflow Trained Word Vectors 0.205 

Averaging GloVE Word Vectors + Numeric Features 0.200 

Convolution Stack Overflow Trained Word Vectors + Numeric Features 0.212 

Convolution Stack Overflow Trained Word Vectors 0.190 

Frequency Based Prediction Baseline 0.173 

Averaging Stack Overflow Trained Word Vectors + Numeric Features  0.152 

Stack Overflow Model Prediction Baseline 0.094 

Additionally, here is the confusion matrix for the Averaging Stack Overflow Trained Word 202 
Vectors + Numeric Features results: 203 

 Not a real 
question 

Not 
constructive 

Off topic Open Too 
Localized 

Not a real 
question 

4 8 20 9856 0 

Not 
constructive 

3 63 21 3438 0 

Off topic 2 10 97 4498 0 

Open 6 54 172 653735 1 

Too 
Localized 

0 1 0 2114 1 

And the precision and recall for each entry: 204 

Label Precision Recall 

not a real question 0.2667 0.0004 

not constructive 0.4632 0.0179 

off topic 0.3129 0.0211 

open 0.9705 0.9996 

too localized 0.5000 0.0005 

Here is an example of correctly classified document as “not a question”: 205 

Title: MySQL Table of UK Area Codes and Names 206 

Text: I need database of Uk cities with their post codes. Any help is appreciated. 207 

Thanks for your time.. 208 

4 Conclusions 209 

Overall this has been a fairly successful experiment. Though many of the models did not achieve 210 

outstanding results, the best performing one did manage to beat both of the starting baselines. This 211 

shows that a neural network can indeed be used to help facilitate predicting what questions on 212 



Stack Overflow should be closed. As can be seen by the confusion matrix, it was able to correctly 213 

predict questions in every category.  214 

 215 

Using this information this models performance can also be compared to those of the other Kaggle 216 

competitors. Though it cannot be compared directly due to not having the labels on the test set 217 

they used, they can be roughly compared due to the benchmarks. Based on those, the best model 218 

here would come around 110th out of 160 submitters. Assuming Kaggle competitors are usually 219 

well versed in machine learning, this seems to be a pretty good result.  220 

 221 

Interesting questions are what caused the other models to perform not as well. This could be due 222 

to bugs in the models or not achieving the best hyperparameters. Each of them have various things 223 

that can be tweaked such as number of layers, number of filters, and many others. Though lots of 224 

various parameters were used to find the best one, it is possible the best parameters were not 225 

achieved. Other future work could entail using other features from stack overflow such as the 226 

number of questions the user has had cancelled before. Additionally, the other models that were 227 

mentioned during the related work could provide better results.  228 
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