

Predicting Closed Stack Overflow Questions

 Levi Franklin 1
 Department of Computer Science 2
 Stanford University 3
 Stanford, CA 4
 lefrankl@stanford.edu 5

 6

Abstract 7

Stack Overflow is a website that is used by software developers extensively 8
to ask and answer questions about software development. Each day they 9
reportedly receive over 6000 questions. Due to this high volume of questions 10
it is difficult and time consuming to analyze them all and determine which 11
should be left open and which should be closed for a variety of reasons. 12

This project aims to provide a method to assist in detecting what questions 13
should be closed and which should remain open. Looking at this problem as 14
a sentence classification problem one can use deep learning and neural 15
network models to train a system that will identify good candidates for 16
closing. With the help of a large dataset provided by Kaggle and Stack 17
Overflow, one can use algorithms that are effective in tasks such as sentiment 18
classification and see how they apply to this task. 19

To evaluate the success of these models, they are compared to several 20
benchmarks as well as to other competitors in the competition. The multiclass 21
log loss is used as it was in the competition to facilitate this comparison. 22
Different models and sets of word vectors are used and their log losses are 23
compared to determine which system works best. 24

In addition to the natural language processing that is done on the text of the 25
question, there are some numeric features which are utilized such as the 26
question asker’s reputation. Similar tests will be done to see if incorporating 27
these features in the model provides better results. Overall this project aims 28
to show that a good estimate of what questions should be closed can be given 29
by a neural network based prediction model. 30

 31

 32

1 Introduction 33

Stack Overflow is a website that is used by developers throughout the world to ask and answer 34
questions that they may have related to software development. Among the reportedly 6000 35
questions Stack Overflow receives every weekday, many are inadequate to make it onto the 36
site. These questions can be closed for being off topic, not constructive, not a real question, 37
or too localized. With this many questions it is difficult to inspect each one so an automated 38
process to assist in determining what should be closed is very helpful. 39

The was recently a Kaggle competition to solve this very issue which includes a dataset of 40
questions, metadata about each question, and whether it was left open, or the reason it was 41
closed. This dataset provides a good set of training and testing data to build a neural network 42

to try to create an automated system for making the determination on if a ques tion should be 43
closed. 44

The first task to consider is how to model the actual words that make up each of the questions 45
in our neural networks. Word vectors are used to represent the words within each question and 46
consist of numeric vectors of some dimension (often 50-100). These word vectors are a 47
representation of how words appear in relation to each other in a large corpus of documents. 48
This project attempts using a pretrained set of word vectors that is well regarded in the field, 49
the GloVe vectors. Additionally, a new set of vectors is trained using the Stack Overflow 50
dataset which incorporates the technical stack overflow terms that may not be in the GloVe 51
set. These two sets of word vectors are compared to see which has better performance. 52

There are many neural network models that could be applied to this problem. Primarily for 53
this project there are two main neural network models that are considered. The first is a system 54
that averages these word vectors and uses those as the input to a traditional mult i-level neural 55
network is used. This has some shortcomings such as not taking into account sentence 56
structure. Secondly a convolutional neural network model is used that passes over the words 57
in each question to consider them in groups. Each of these filters, or convolutions, outputs 58
some estimate that is then pooled together. The result of this is used to make a prediction on 59
what class that input belongs to. This does a better job of including sentence structure but is 60
more complicated and time consuming to run. 61

The other portion to consider is how to incorporate numeric features in addition to these word 62
vectors. Each question includes some numeric features such as the user’s reputation at the time 63
of asking or how many open questions they have at the time of asking. The main method of 64
including these features is taking them on to the end of each word vector so that they can be 65
included in the training. Training with these features is compared to training without to see 66
which is more helpful. 67

In order to gauge the performance of these models the log loss metric is used. This is the 68
metric that was used during the Kaggle competition which will allow comparison with other 69
competitors. Additionally, the loss of these models will be compared to some baselines. This 70
will include making a uniform prediction of each class as the most naïve baseline, as well as 71
one based purely on the class distribution in our training data. Lastly Stack Overflow has 72
provided a machine learning model they created to compare against other submissions. 73
Overall this project aims to beat both more rudimentary baselines and be near many of the 74
other Kaggle submissions in performance. 75

 76

2 Background/Related Work 77

This problem can be treated primarily as a classification problem where the main goal is to 78
take in one stack overflow question and the metadata associated with it, and classify it as one 79
of 5 categories: open, off topic, not constructive, not a real quest ion, or too localized. This 80
problem is a familiar topic in natural language processing called sentence classification. It has 81
been studied before and many people have proposed solutions. A common task that is used as 82
an example in these studies is doing sentiment analysis of things like movie reviews [1]-[4]. 83

The first aspect in these sort of problems is representing the words in these sentences as word 84
vectors. These word vectors are generally generated by creating a matrix of what words are 85
near each other in a large corpus. Usually this corpus consists of things like Wikipedia. One 86
popular word vector representation is the GloVe system which creates a cooccurence matrix 87
and then reduces it using techniques like SVD [5]-[6]. Another model is called word2vec or 88
the skipgram model and learns word vectors on the fly using a predictive model [7]. One can 89
use vectors trained in either way for a neural network model. 90

Once a method or representing the questions has been determined, it is prudent to investigate 91
what models will best make the associated classification. One easier yet surprisingly powerful 92
solution is to just average the word vectors that are used in the sentences. This does not hold 93
the structure of the sentence but can capture some meaning. Another technique makes use of 94
recursive neural networks which feeds the sentences into a set of similar network levels that 95
share a single weight matrix and feed into the next one, capturing the result of all the words 96
before it [8]. This model suffers from a vanishing gradient issue where it forgets about older 97

words as time goes on and the gradient becomes weaker. 98

Two other techniques help lessen this gradient problem by using as building blocks of their 99
network a layer that has some “memory”. Gated Feedback Recurrent (GRUs [9]-[10]) and 100
Long Short-Term Memory (LSTMs [11]) neural networks keep track of more information from 101
previous parts of the sentence. 102

Another system that takes into account structure is convolutional neural networks [3]. These 103
networks take a filter and do a convolution over the sentence. It looks at some number of 104
words and passes along the sentence making predictions based on those words. This can 105
happen multiple times and in the end the results are pooled to make a final prediction. Overall 106
these technique provide several different ways that sentences can be processed and classified 107
based on a set of training data. 108

 109

3 Approach 110

The approach that is taken in this paper explores two different models and compares them with 111
various input types. Additionally, it makes use of two different sets of word vectors and 112
compares them to gauge which is more applicable. These different techniques are trained 113
against a large dataset of questions provided by Stack Overflow and are then tested on a 114
separate subset of those questions. The baselines are also computed on that training set and 115
are used to compare these values to the other Kaggle competitors. 116

The two kinds of word vectors that are considered are the GloVe vectors that are mentioned 117
above and ones that are trained specifically on the corpus of training data that we are using. 118
The GloVe vectors are pre trained and are known to do a good job at expressing the ways that 119
word correlate with one another. However, they are trained on a corpus of Wikipedia and 120
Gigaword [12] so they may be missing some technical terminology that Stack Overflow uses. 121
In an effort to overcome this a large set of Stack Overflow questions is also used to generate 122
another set of word vectors that may be better suited to this task. 123

Next the first model that is tested should be discussed. This model is an averaging of all the 124
word vectors in each sentence. This resulting word vector is then fed into a neural network 125
and is trained against the dataset of questions. This neural network takes in the average word 126
vector, runs it through some number of hidden layers which multiply it by various weights 127
which are learned during training. The final layer combines all of these into a final prediction 128
of open or closed. 129

 130

Figure 1. Averaging Word Vectors 131

The next model that is used is a convolution neural network model. This type of model takes 132
filters of various sizes and applies them over the word vectors. These filters are passed over 133
the words in the sentences in sets that are the size of each filter. Then these filters outputs are 134
pooled together and used to make a prediction much like in the model before. In this model, 135
the actual structure of the sentences matters and influences the final results. 136

 137

 138

Figure 2. Convolutional Neural Network [13] 139

The other main consideration is how to incorporate the numeric features in each of these 140
models. As was mentioned before, each question also includes the reputation of the user and 141
the number of other open questions they have. This information can be very helpful in 142
determining if a question should be open as someone with high reputation is much more likely 143
to submit a question correctly. The technique that is used here is to include those two values 144
in the end of the word vectors. For averaging word vectors it is done after they are averaged 145
and for the convolutional network they are added to every vector. This allows them to be 146
included in the neural computations just like any other feature. 147

Lastly some discussion of the metric that is used to evaluate these models is important. The 148
Kaggle competition used the mutli class log loss. As will be seen later on the dataset that is 149
used has a highly biased distribution towards the open category. This means most all models 150
will achieve high accuracy as well as very similar precision and recall so these metrics are not 151
overly helpful. In order to compare these models to the baselines and the other competitors 152
the log loss is used here as well. The equation for the log loss multiplies the log of the 153
probability for the correct class of each input and averages them all. 154

Log Loss: −
1

𝑁
∑ 𝑦𝑖log⁡(𝑦𝑖̅)𝑖 155

 156

4 Experiment 157

 158

4 .1 Da ta se t 159

The dataset that was used is a very large collection of Stack Overflow questions coming from 160
Kaggle and Stack Overflow. In total it has around 3.4 million questions. The dataset 161
distribution is heavily weighted towards the open class. Stack Overflow has stated that around 162
6% of their questions are close with even less being marked as closed in the training data. This 163
data was split up as 60% training, 20% dev, and 20% final testing. 164

 165

Training 2,022,318 60%

Development 674,106 20%

Testing 674,106 20%

Figure 3. Distribution of 3,370,530 questions in dataset 166

 167

Figure 4. Distribution of class labels 168

The dataset includes the following features that are useful in training a neural network: 169

 Question Title 170

 Question Text 171

 Submitter’s stack overflow reputation 172

 Number of questions submitter has open at time of submission 173

Here is a sample entry for a question that was marked as closed: 174

Users reputation: 32 175

Users other open question count: 0 176

Title: List of all .txt file 177

Text: I want to write a program that give a path in my system and goes to that path and 178

search in that path and sub-directory of path and list all of .txt file. please help me 179

thanks . 180

Label: not a real question 181

4 .2 Resu l t s 182

To begin the values of log loss on the test set for each of the baselines was collected. As was 183
mentioned before the uniform baselines predicts evenly across all classes and provides a 184
very bottom baseline. Next is a baseline that predicts the same distribution as the dataset 185
distribution that was mentioned above. This is a better baseline in that it predicts open 186
heavily and is almost always right. The goal is to improve upon this baseline. The last 187
baseline is the one based on the model that was given by the Stack Overflow team as their 188
baseline for predicting. This improves upon the frequency distribution baseline substantially 189
and is a good goal for these models to achieve. 190

The first experiment was to train the averaging model with both GloVe word vectors and the 191
Stack Overflow trained vectors, then compare the final log loss with the baselines and the 192
other Kaggle competitors. Unfortunately, the correct labels for the final submission in the 193
Kaggle competition were not made available so this comparison can only be made in 194
comparison to these three baselines. Secondly, the same experiment is done using the 195
convolutional model. On this experiment however, the GloVe vectors were excluded as it 196
was seen that the Stack Overflow trained word vectors performed better. There was also 197
some work done to try resampling the dataset to compensate for the uneven class 198
distribution, and then readjusting the predictions based on their correct distribution in Stack 199

97.92%

0.91% 0.52% 0.46% 0.18%

Open Not a real question Off topic Not constructive Too localized

Distribution of Class Labels

Overflow questions. However, this did not prove to help and was abandoned. 200

 201

Method Log Loss

Uniform Prediction Baseline 1.609

Averaging Stack Overflow Trained Word Vectors 0.205

Averaging GloVE Word Vectors + Numeric Features 0.200

Convolution Stack Overflow Trained Word Vectors + Numeric Features 0.212

Convolution Stack Overflow Trained Word Vectors 0.190

Frequency Based Prediction Baseline 0.173

Averaging Stack Overflow Trained Word Vectors + Numeric Features 0.152

Stack Overflow Model Prediction Baseline 0.094

Additionally, here is the confusion matrix for the Averaging Stack Overflow Trained Word 202
Vectors + Numeric Features results: 203

 Not a real
question

Not
constructive

Off topic Open Too
Localized

Not a real
question

4 8 20 9856 0

Not
constructive

3 63 21 3438 0

Off topic 2 10 97 4498 0

Open 6 54 172 653735 1

Too
Localized

0 1 0 2114 1

And the precision and recall for each entry: 204

Label Precision Recall

not a real question 0.2667 0.0004

not constructive 0.4632 0.0179

off topic 0.3129 0.0211

open 0.9705 0.9996

too localized 0.5000 0.0005

Here is an example of correctly classified document as “not a question”: 205

Title: MySQL Table of UK Area Codes and Names 206

Text: I need database of Uk cities with their post codes. Any help is appreciated. 207

Thanks for your time.. 208

4 Conclusions 209

Overall this has been a fairly successful experiment. Though many of the models did not achieve 210

outstanding results, the best performing one did manage to beat both of the starting baselines. This 211

shows that a neural network can indeed be used to help facilitate predicting what questions on 212

Stack Overflow should be closed. As can be seen by the confusion matrix, it was able to correctly 213

predict questions in every category. 214

 215

Using this information this models performance can also be compared to those of the other Kaggle 216

competitors. Though it cannot be compared directly due to not having the labels on the test set 217

they used, they can be roughly compared due to the benchmarks. Based on those, the best model 218

here would come around 110th out of 160 submitters. Assuming Kaggle competitors are usually 219

well versed in machine learning, this seems to be a pretty good result. 220

 221

Interesting questions are what caused the other models to perform not as well. This could be due 222

to bugs in the models or not achieving the best hyperparameters. Each of them have various things 223

that can be tweaked such as number of layers, number of filters, and many others. Though lots of 224

various parameters were used to find the best one, it is possible the best parameters were not 225

achieved. Other future work could entail using other features from stack overflow such as the 226

number of questions the user has had cancelled before. Additionally, the other models that were 227

mentioned during the related work could provide better results. 228

References 229

[1] Andrew L. Maas and Andrew Y. Ng (2010) A Probabilistic Model for Semantic Word Vectors 230

[2] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher 231
Potts (2011) Learning Word Vectors for Sentiment Analysis. 232

[3] Yoon Kim (2014) Convolutional Neural Networks for Sentence Classification 233

[4] Quoc Le, Tomas Mikolov (2014) Distributed Representations of Sentences and Documents 234

[5] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. (2014). GloVe: Global Vectors 235
for Word Representation. 236

[6] Eric H. Huang, Richard Socher∗ , Christopher D. Manning, Andrew Y. Ng (2015) Improving 237
Word Representations via Global Context and Multiple Word Prototypes 238

[7] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean (2013) Distributed 239
Representations of Words and Phrases and their Compositionality 240

[8] Toma´s Mikolov, Martin Karafiat, Luka´s Burget, Jan “Honza” Cernock, Sanjeev Khudanpur 241
(2010) Recurrent neural network based language model 242

[9] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio (2014) Empirical Evaluation 243
of Gated Recurrent Neural Networks on Sequence Modeling 244

[10] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio (2015) Gated Feedback 245
Recurrent Neural Networks 246

[11] Sepp Hochreiter, Jurgen Schmidhuber (1999) Long Short-Term Memory 247

[12] Parker, Robert, et al. English Gigaword Fifth Edition LDC2011T07. DVD. 248
Philadelphia: Linguistic Data Consortium, 2011. 249

[13] http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 250
(2015) UNDERSTANDING CONVOLUTIONAL NEURAL NETWORKS FOR NLP 251

